

Hands-On Data Analysis with NumPy and pandas

Implement Python packages from data manipulation to processing

Curtis Miller

https://www.facebook.com/groups/stats.ebooksandpapers/

BIRMINGHAM - MUMBAI

https://www.facebook.com/groups/stats.ebooksandpapers/

Hands-On Data Analysis with
NumPy and pandas
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held
liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Commissioning Editor: Sunith Shetty
Acquisition Editor: Tushar Gupta
Content Development Editor: Prasad Ramesh
Technical Editor: Sagar Sawant
Copy Editor: Vikrant Phadke
Project Coordinator: Nidhi Joshi
Proofreader: Safis Editing
Indexer: Rekha Nair
Graphics: Jisha Chirayil
Production Coordinator: Shraddha Falebhai

First published: June 2016

Production reference: 1280618

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78953-079-7

www.packtpub.com

http://www.packtpub.com
https://www.facebook.com/groups/stats.ebooksandpapers/

mapt.io

Mapt is an online digital library that gives you full access to over 5,000
books and videos, as well as industry leading tools to help you plan your
personal development and advance your career. For more information,
please visit our website.

https://mapt.io/
https://www.facebook.com/groups/stats.ebooksandpapers/

Why subscribe?
Spend less time learning and more time coding with practical eBooks
and Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

https://www.facebook.com/groups/stats.ebooksandpapers/

PacktPub.com
Did you know that Packt offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at www.PacktPub.com and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us at service@packtpub.com for
more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters, and receive exclusive discounts and
offers on Packt books and eBooks.

http://www.PacktPub.com
http://www.packtpub.com
https://www.facebook.com/groups/stats.ebooksandpapers/

Contributors

https://www.facebook.com/groups/stats.ebooksandpapers/

About the author
Curtis Miller is a graduate student at the University of Utah, seeking a
master's in statistics (MSTAT) and a big data certificate. He was a math
tutor and has a double major in mathematics, with an emphasis on
statistics as a second major.

He has studied the gender pay gap, and presented his paper on Gender Pay
Disparity in Utah, which grabbed the attention of local media outlets.

He currently teaches basic statistics at the University of Utah. He enjoys
writing and is an avid reader. He also enjoys studying politics, economics,
history, psychology, and sociology.

https://www.facebook.com/groups/stats.ebooksandpapers/

Packt is searching for authors like
you
If you're interested in becoming an author for Packt, please visit authors.pac
ktpub.com and apply today. We have worked with thousands of developers
and tech professionals, just like you, to help them share their insight with
the global tech community. You can make a general application, apply for
a specific hot topic that we are recruiting an author for, or submit your
own idea.

http://authors.packtpub.com
https://www.facebook.com/groups/stats.ebooksandpapers/

Table of Contents

https://www.facebook.com/groups/stats.ebooksandpapers/

Title Page

Copyright and Credits

Hands-On Data Analysis with NumPy and pandas

Packt Upsell

Why subscribe?

PacktPub.com

Contributors

About the author

Packt is searching for authors like you

Preface

Who this book is for

What this book covers

To get the most out of this book

Download the example code files

Conventions used

Get in touch

Reviews

1. Setting Up a Python Data Analysis Environment

What is Anaconda?

Installing Anaconda

Exploring Jupyter Notebooks

Exploring alternatives to Jupyter

Spyder

Rodeo

ptpython

Package management with Conda

What is Conda?

Conda environment management

Managing Python

Package management

Setting up a database

Installing MySQL

MySQL connectors

Creating a database

Summary

https://www.facebook.com/groups/stats.ebooksandpapers/

2. Diving into NumPY

NumPy arrays

Special numeric values

Creating NumPy arrays

Creating ndarray

Summary

https://www.facebook.com/groups/stats.ebooksandpapers/

3. Operations on NumPy Arrays

Selecting elements explicitly

Slicing arrays with colons

Advanced indexing

Expanding arrays

Arithmetic and linear algebra with arrays

Arithmetic with two equal-shaped arrays

Broadcasting

Linear algebra

Employing array methods and functions

Array methods

Vectorization with ufuncs

Custom ufuncs

Summary

https://www.facebook.com/groups/stats.ebooksandpapers/

4. pandas are Fun! What is pandas?

What does pandas do?

Exploring series and DataFrame objects

Creating series

Creating DataFrames

Adding data

Saving DataFrames

Subsetting your data

Subsetting a series

Indexing methods

Slicing a DataFrame

Summary

https://www.facebook.com/groups/stats.ebooksandpapers/

5. Arithmetic, Function Application, and Mapping with pandas

Arithmetic

Arithmetic with DataFrames

Vectorization with DataFrames

DataFrame function application

Handling missing data in a pandas DataFrame

Deleting missing information

Filling missing information

Summary

https://www.facebook.com/groups/stats.ebooksandpapers/

6. Managing, Indexing, and Plotting

Index sorting

Sorting by values

Hierarchical indexing

Slicing a series with a hierarchical index

Plotting with pandas

Plotting methods

Summary

Other Books You May Enjoy

Leave a review - let other readers know what you think

https://www.facebook.com/groups/stats.ebooksandpapers/

Preface
Python, a multi-paradigm programming language, has become the
language of choice for data scientists for data analysis, visualization, and
machine learning.

You will start off by learning how to set up the right environment for data
analysis with Python. Here, you'll learn to install the right Python
distribution, as well as work with the Jupyter notebook and set up a
database. After that, you will dive into Python's NumPy package—
Python's powerful extension with advanced mathematical functions. You
will learn to create NumPy arrays, as well as employ different array
methods and functions. Then, you will explore Python's pandas extension,
where you will learn to subset your data, as well as dive into data mapping
using pandas. You'll also learn to manage your datasets by sorting and
ranking them.

By the end of this book, you will learn to index and group your data for
sophisticated data analysis and manipulation.

https://www.facebook.com/groups/stats.ebooksandpapers/

Who this book is for
If you are a Python developer and want to take your first steps into the
world of data analysis, then this is the book you have been waiting for!

https://www.facebook.com/groups/stats.ebooksandpapers/

What this book covers
Chapter 1, Setting Up a Python Data Analysis Environment, discusses
installing Anaconda and managing it. Anaconda is a software package we
will use in the following chapters of this book.

Chapter 2, Diving into NumPY, discusses NumPy data types controlled by
dtype objects, which are the way NumPy stores and manages data.

Chapter 3, Operations on NumPy Arrays, will cover what every NumPy user
should know about array slicing, arithmetic, linear algebra with arrays, and
employing array methods and functions.

Chapter 4, pandas are Fun! What is pandas?, introduces pandas and looks at
what it does. We explore pandas series, DataFrames, and creating them.

Chapter 5, Arithmetic, Function Application, and Mapping with pandas,
revisits some topics discussed previously, regarding applying functions in
arithmetic to a multivariate object and handling missing data in pandas.

Chapter 6, Managing, Indexing, and Plotting, looks at sorting and ranking.
We'll see how to achieve this in pandas, looking at hierarchical indexing
and plotting with pandas.

https://www.facebook.com/groups/stats.ebooksandpapers/

To get the most out of this book
Python 3.4.x or newer. On Debian and derivatives (Ubuntu): python,
python-dev, or python3-dev. On Windows: The official python installer at
www.python.org is enough:

NumPy
pandas

http://www.python.org
https://www.facebook.com/groups/stats.ebooksandpapers/

Download the example code files
You can download the example code files for this book from your account
at www.packtpub.com. If you purchased this book elsewhere, you can visit www.p
acktpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at www.packtpub.com.
2. Select the SUPPORT tab.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box and follow the onscreen

instructions.

Once the file is downloaded, please make sure that you unzip or extract the
folder using the latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Hands-On-Data-Analysis-with-NumPy-and-pandas. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and
videos available at https://github.com/PacktPublishing/. Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Hands-On-Data-Analysis-with-NumPy-and-pandas
https://github.com/PacktPublishing/
https://www.facebook.com/groups/stats.ebooksandpapers/

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder
names, filenames, file extensions, pathnames, dummy URLs, user input,
and Twitter handles. Here is an example: "Then with this sign, I multiply
this array with arr1."

Any command-line input or output is written as follows:

 conda install selenium

Bold: Indicates a new term, an important word, or words that you see on
screen. For example, words in menus or dialog boxes appear in the text
like this. Here is an example: "Here we add monotype and then click
on Run cell again."

Warnings or important notes appear like this.

Tips and tricks appear like this.

https://www.facebook.com/groups/stats.ebooksandpapers/

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in
the subject of your message. If you have questions about any aspect of this
book, please email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we
would be grateful if you would report this to us. Please visit www.packtpub.com
/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on
the internet, we would be grateful if you would provide us with the
location address or website name. Please contact us at copyright@packtpub.com
with a link to the material.

If you are interested in becoming an author: If there is a topic that you
have expertise in and you are interested in either writing or contributing to
a book, please visit authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.facebook.com/groups/stats.ebooksandpapers/

Reviews
Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers can
then see and use your unbiased opinion to make purchase decisions, we at
Packt can understand what you think about our products, and our authors
can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

https://www.packtpub.com/
https://www.facebook.com/groups/stats.ebooksandpapers/

Setting Up a Python Data Analysis
Environment
In this chapter, we will cover the following topics:

Installing Anaconda
Exploring Jupyter Notebooks
Exploring an alternative to Jupyter
Managing the Anaconda package
Setting up a database

In this chapter, we'll discuss installing Anaconda and managing it.
Anaconda is a software package we will use in the following chapters of
this book.

https://www.facebook.com/groups/stats.ebooksandpapers/

What is Anaconda?
In this section, we will discuss what Anaconda is and why we use it. We'll
provide a link to show where to download Anaconda from the website of
its sponsor, Continuum Analytics, and discuss how to install Anaconda.
Anaconda is an open source distribution of the Python and R programming
languages.

In this book, we'll focus on the portion of Anaconda devoted to Python.
Anaconda helps us use these languages for data analysis applications,
including large-scale data processing, predictive analytics, and scientific
and statistical computing. Continuum Analytics provides enterprise
support for Anaconda, including versions that help teams collaborate and
boost the performance of their systems, along with providing a means for
deploying models developed using Anaconda. Thus, Anaconda appears in
enterprise settings, and aspiring analysts should be familiar with its use.
Many of the packages used in this book, including Jupyter, NumPy,
pandas, and many others common in data analysis, are included with
Anaconda. This alone may explain its popularity.

An Anaconda installation includes most of what you need for data analysis
out of the box. The Conda package manager can be used to download and
installation new packages as well.

Why use Anaconda? Anaconda packages Python specifically for data analysis. The
most important packages for your project are included with an Anaconda installation.
With the addition of some performance boosts provided by Anaconda and Continuum
Analytics' enterprise support of the package, one should not be surprised by its
popularity.

https://www.facebook.com/groups/stats.ebooksandpapers/

Installing Anaconda
One can download Anaconda for free from the Continuum Analytics
website. The link to the main download page is https://www.anaconda.com/downl
oad/; otherwise, it is easy to find. Be sure to choose the installer that is
appropriate for your system. Obviously, choose the installer appropriate
for your operating system, but also be aware that Anaconda comes in 32-
bit and 64-bit versions. The 64-bit version provides the best performance
for 64-bit systems.

The Python community is in a slow transition from Python 2.7 to Python
3.6, which is not fully backward compatible. If you need to use Python 2.7,
perhaps because of legacy code or a package that has not yet been updated
to work with Python 3.6, choose the Python 2.7 version of Anaconda.
Otherwise, we will be using Python 3.6.

This following screenshot is from the Anaconda website, from where
analysts can download Anaconda:

Anaconda website

https://www.anaconda.com/download/
https://www.facebook.com/groups/stats.ebooksandpapers/

As you can see, we can choose the Anaconda install appropriate for the OS
(including Windows, macOS, and Linux), the processor, and the version of
Python. Navigate to the correct OS and processor, and decide between
Python 2.7 and Python 3.6.

Here, we will be using a Python 3.6. Installation on Windows, and macOS,
ultimately amounts to using an install wizard that usually chooses the best
options for your system, though it does allow some options that vary
depending on your preferences.

The Linux install must be done via the command line, but it should not be
too complicated for those who are familiar with Linux installation. It
ultimately amounts to running a Bash script. Throughout this book, we
will be using Windows.

https://www.facebook.com/groups/stats.ebooksandpapers/

Exploring Jupyter Notebooks
In this section, we will be exploring Jupyter Notebooks, the primary tool
with which we will do data analysis with Python. We will see what Jupyter
Notebooks are, and we will also talk about Markdown, which is what we
use to create formatted text in Jupyter Notebooks. In a Jupyter Notebook,
there are two types of blocks. There are blocks of Python code that are
executable, and then there are formatted, human-readable text blocks.

Users execute the Python code blocks, and the results are inserted directly
into the document. Code blocks can be rerun in any order without
necessarily affecting later blocks, unless they are also run. Since a Jupyter
Notebook is based on IPython, there's some additional functionality, for
example, magic functions.

Jupyter Notebooks is included with Anaconda. Jupyter Notebooks allow
plain text to be intermixed with code. Plain text can be formatted with a
language called Markdown. It is done in plain text. We can also insert
paragraphs. The following example is some common syntax you see in
Markdown:

The following screenshot shows a Jupyter Notebook:

https://www.facebook.com/groups/stats.ebooksandpapers/

As you can see, it runs out of a web browser, such as Chrome or Firefox,
in this case, Chrome. When we begin the Jupyter Notebook, we are in a
file browser. We are in a newly created directory called Untitled Folder. In
Jupyter Notebook there are options for creating new Notebooks, text files,
and folders. As seen the the preceding screenshot, currently there is no
Notebook saved. We will need a Python Notebook, which can be created
by selecting the Python option in the New drop-down menu shown in the
following screenshot:

When the Notebook has started, we begin with a code block. We can
change this code block to a Markdown block, and we can now start
entering text.

For example, we can enter a heading. We can also enter plain text along
with bold and italics, as shown in the next screenshot:

https://www.facebook.com/groups/stats.ebooksandpapers/

As you can see, there is some hint of how the rendering will look at the
end, but we can actually see the rendering by clicking on the run cell
button. If we want to change this, we can double-click on the same cell.
Now we're back to plain text editing. Here we add monotype and then
click on Run cell again, shown as follows:

On pressing Enter, a new cell is immediately created afterwards. This cell
is a Python cell, where we can enter Python code. For example, we can
create a variable. We print Hello, world! multiple times, as shown in the
next screenshot:

https://www.facebook.com/groups/stats.ebooksandpapers/

To see what happens when the cell is executed, we simply click on the run
cell; also, when we pressed Enter, a new cell block was created. Let's
make this cell block a Markdown block. If we want to insert an additional
cell, we can press Insert cell below. In this first cell, we're going to enter
some code, and in the second cell, we can enter code that is dependent on
code in the first cell. Notice what happens when we try to execute the code
in the second cell before executing the code in the first. An error will be
produced, shown as follows:

https://www.facebook.com/groups/stats.ebooksandpapers/

The complaint, the variable trigger, has not been defined. In order for the
second cell to work, we need to run this first cell. Then, when we run the
second cell, we get the expected output. Now let's suppose we were to
change the code in this cell; say, instead of trigger = False, we have trigger =
True. This second cell will not be aware of the change. If we run this cell
again, we get the same output. So we will need to run this cell first, thus
affecting the change; then we can run the second cell and get the expected
output.

What has happened in the background? What's going on is that there is a
kernel, which is basically a running session of Python, tracking all of our
variables and everything that has happened up to this point. If we click on
Kernel, we can see an option to restart the kernel; this will basically restart
our session of Python. We are initially warned that by restarting the kernel,
all variables will be lost.

When the kernel has been restarted, it doesn't appear as if anything has
changed, but if we run the second cell, an error will be produced because
the variable trigger does not exist. We will need to run the previous cell
first in order for this cell to work. If we want to, instead, not merely restart
the kernel but restart the kernel and also rerun all cells, we need to click
on Restart & Run All. After restarting the kernel, all cell blocks will

https://www.facebook.com/groups/stats.ebooksandpapers/

be rerun. It may not appear as if anything has happened, but we have
started from the first, run it, run the second cell, and then run the third cell,
shown as follows:

We can also import libraries. For example, we can import a module from
Matplotlib. In this case, in order for Matplotlib to work interactively in a
Jupyter Notebook, we will need to use what's called a magic function,
which begins with a %, the name of the magic function, and any sort of
parameters we need to pass to it. We'll cover these in more detail later, but
first let's run that cell block. plt has now been loaded, and now we can use
it. For example, in this last cell, we will type in the following code:

Notice that the output from this cell is inserted directly into the document.
We can immediately see the plot that was created. Returning to magic
functions, this is not the only function that we have available. Let's see
some other functions:

The magic function, magic, will print info about the magic system, as
shown in the following screenshot:

https://www.facebook.com/groups/stats.ebooksandpapers/

Output of "magic" command

Another useful function is timeit, which we can use to profile code.
We first type in timeit and then the code that we wish to profile,
shown as follows:

The magic function pwd can be used to see what the working directory
is, shown as follows:

https://www.facebook.com/groups/stats.ebooksandpapers/

The magic function cd can be used to change the working directory,
shown as follows:

The magic function pylab is useful if we wish to start both Matplotlib
and NumPy in interactive mode, shown as follows:

If we wish to see a list of available magic functions, we can type lsmagic,
shown as follows:

And if we wish for a quick reference sheet, we can use the magic function
quickref, shown as follows:

https://www.facebook.com/groups/stats.ebooksandpapers/

Now that we're done with this Notebook, let's give it a name. Let's simply
call it My Notebook. This is done by clicking on the name of the Notebook at
the top of the editor pane. Finally, you can save, and after saving, you can
close and halt the Notebook. So this will close the Notebook and halt the
Notebook's kernel. That would be the clean way to leave the Notebook.
Notice now, in our tree, we can see the directory where the Notebook was
saved, and we can see that the Notebook exists in that directory. It is an
ipynb document.

https://www.facebook.com/groups/stats.ebooksandpapers/

Exploring alternatives to Jupyter
Now we will consider alternatives to Jupyter Notebooks. We will look at:

Jupyter QT Console
Spyder
Rodeo
Python interpreter
ptpython

The first alternative we will consider is the Jupyter QT Console; this is a
Python interpreter with added functionality, aimed specifically for data
analysis.

The following screenshot shows the Jupyter QT Console:

It is very similar to the Jupyter Notebook. In fact, it is effectively the
Console version of the Jupyter Notebook. Notice here that we have some
interesting syntax. We have In [1], and then let's suppose you were to type
in a command, for example:

print ("Hello, world!")

We see some output and then we see In [2].

Now let's try something else:

1 + 1

https://www.facebook.com/groups/stats.ebooksandpapers/

Right after In [2], we see Out[2]. What does this mean? This is a way to
track historical commands and their outputs in a session. To access, say,
the command for In [42], we type _i42. So, in this case, if we want to see
the input for command 2, we type in i2. Notice that it gives us a string, 1 +
1. In fact, we can run this string.

If we type in eval and then _i2, notice that it gives us the same output as the
original command, In [2], did. Now, how about Out[2]? How can we access
the actual output? In this case, all we would do is just _ and then the
number of the output, say 2. This should give us 2. So this gives you a
more convenient way to access historical commands and their outputs.

Another advantage of Jupyter Notebooks is that you can see images. For
example, let's get Matplotlib running. First we're going to import
Matplotlib with the following command:

import matplotlib.pyplot as plt

After we've imported Matplotlib, recall that we need to run a certain
magic, the Matplotlib magic:

%matplotlib inline

We need to give it the inline parameter, and now we can create a
Matplotlib figure. Notice that the image shows up right below the
command. When we type in _8, it shows that a Matplotlib object was
created, but it does not actually show the plot itself. As you can see, we
can use the Jupyter console in a more advanced way than the typical
Python console. For example, let's work with a dataset called Iris; import it
using the following line:

from sklearn.datasets import load_iris

This is a very common dataset used in data analysis. It's often used as a
way to evaluate training models. We will also use k-means clustering on
this:

https://www.facebook.com/groups/stats.ebooksandpapers/

from sklearn.cluster import KMeans

The load_Iris function isn't actually the Iris dataset; it is a function that we
can use to get the Iris dataset. The following command will actually give
us access to that dataset:

iris = load_iris()

Now we will train a k-means clustering scheme on this dataset:

iris_clusters = KMeans(n_clusters = 3, init = "random").fit(iris.data)

We can see the documentation right away when we're typing in a function.
For example, I know what the end clusters parameter means; it is actually
the original doc string from the function. Here, I want the number of
clusters to be 3, because I know that there are actually three real clusters in
this dataset. Now that a clustering scheme has been trained, we can plot it
using the following code:

plt.scatter(iris.data[:, 0], iris.data[:, 1], c = iris_clusters.labels_)

https://www.facebook.com/groups/stats.ebooksandpapers/

Spyder
Spyder is an IDE unlike the Jupyter Notebook or the Jupyter QT Console.
It integrates NumPy, SciPy, Matplotlib, and IPython. It is extensible with
plugins, and it is included with Anaconda.

The following screenshot shows Spyder, an actual IDE intended for data
analysis and scientific computing:

Spyder Python 3.6

On the right, you can go to File explorer to search for new files to load.
Here, we want to open up iris_kmeans.py. This is a file that contains all the
commands that we used before in the Jupyter QT Console. Notice on the
right that the editor has a console; that is in fact the IPython console,
which you saw as the Jupyter QT Console. We can run this entire file by
clicking on the Run tab. It will run in the console, shown as follows:

https://www.facebook.com/groups/stats.ebooksandpapers/

The following screenshot will be the output:

https://www.facebook.com/groups/stats.ebooksandpapers/

Notice that at the end we see the result of the clustering that we saw
before. We can type in commands interactively as well; for example, we
can make our computer say Hello, world!.

In the editor, let's type in a new variable, let's say n = 5. Now let's run this
file in the editor. Notice that n is a variable that the editor is aware of. Now
let's make a change, say n = 6. Unless we were to actually run this file
again, the console will be unaware of the change. So if I were to type n in
the console again, nothing changes, and it's still 5. You would need to run
this line in order to actually see a change.

We also have a variable explorer where we can see the values of variables
and change them. For example, I can change the value of n from 6 to 10,
shown as follows:

The following screenshot shows the output:

https://www.facebook.com/groups/stats.ebooksandpapers/

Then, when I go to the console and ask what n is, it will say 10:

n

10

That concludes our discussion of Spyder.

https://www.facebook.com/groups/stats.ebooksandpapers/

Rodeo
Rodeo is a Python IDE developed by Yhat, and is intended for data
analysis applications exclusively. It is intended to emulate the RStudio
IDE, which is popular among R users, and it can be downloaded from
Rodeo's website. The only advantage of the base Python interpreter is that
every Python installation includes it, shown as follows:

https://www.facebook.com/groups/stats.ebooksandpapers/

ptpython
What may be a lesser known console-based Python REPL is ptpython,
designed by Jonathan Slenders. It exists only in the console and is an
independent project by him. You can find it on GitHub. It has lightweight
features, yet it also includes syntax highlighting, autocompletion, and even
IPython. It can be installed with the following command:

pip install ptpython

That concludes our discussion on alternatives to the Jupyter Notebooks.

https://www.facebook.com/groups/stats.ebooksandpapers/

Package management with Conda
We will now discuss package management with Conda. In this section,
we're going to take a look at the following topics:

What is Conda?
Managing Conda environments
Managing Python with Conda
Managing packages with Conda

https://www.facebook.com/groups/stats.ebooksandpapers/

What is Conda?
So what is Conda? Conda is the Anaconda package manager. Conda
allows us to create and manage multiple environments, allowing multiple
versions of Python, R, and their relevant packages to exist. This can be
very useful if you need to develop for different systems with different
versions of Python and their packages. Conda allows you to manage
Python and R versions, and it also facilitates installation and management
of packages.

https://www.facebook.com/groups/stats.ebooksandpapers/

Conda environment management
A Conda environment allows developers to use and manage different
versions of Python in its packages. This can be useful for testing and
development on legacy systems. Environments can be saved, cloned, and
exported so that others can replicate results.

Here are some common environment management commands.

For environment creation:

conda create --name env_name prog1 prog2

conda create --name env_name python=3 prog3

For listing environments:

conda env list

To verify the environment:

conda info --envs

To clone the environment:

conda create --name new_env --clone old_env

To remove environments:

conda remove --name env_name -all

Users can share environments by creating a YAML file, which recipients
can use to construct an identical environment. You can do this by hand,
where you effectively replicate what Anaconda would make, but it is much
easier to have Anaconda create a YAML file for you.

After you have created such a file, or if you've received this file from
another user, it is very easy to create a new environment.

https://www.facebook.com/groups/stats.ebooksandpapers/

Managing Python
As mentioned earlier, Anaconda allows you to manage multiple versions
of Python. It is possible to search and see which versions of Python are
available for installation. You can verify which version of Python is in an
environment, and you can even create environments for Python 2.7. You
can also update the version of Python that is in a current environment.

https://www.facebook.com/groups/stats.ebooksandpapers/

Package management
Let's suppose that we're interested in installing the package selenium, which
is a package that is used for web scraping and also web testing. We can list
the packages that are currently installed, and we can give the command to
install a new package.

First, we should search to see whether the package is available from the
Conda system. Not all packages that are available on pip are available from
Conda. That said, it is in fact possible to install a package available from
pip, although hopefully, if we wish to install a package, we can use
the following command:

conda install selenium

If selenium is the package we're interested in, it can be downloaded
automatically from the internet, unless you have a file that Anaconda can
install directly from your system.

To install packages via pip, use the following:

pip install package_name

Packages, of course, can be removed as follows:

conda remove selenium

https://www.facebook.com/groups/stats.ebooksandpapers/

Setting up a database
We'll now begin discussing setting up a database for you to use. In this
section, we're going to look at the following topics:

Installing MySQL
Installing MySQL connector for Python
Creating, using, and deleting databases

MySQL connector is necessary in order to use MySQL with Python. There
are many SQL database implementations in existence, and while MySQL
may not be the simplest database management system, it is full-featured, it
is industrial-strength, it is commonly seen in real world situations, and
furthermore, it is free and open source, which means it's an excellent tool
to learn on. You can obtain the MySQL Community Edition, which is the
free and open source version, from MySQL's website (go to https://dev.mysq
l.com/downloads/).

https://dev.mysql.com/downloads/
https://www.facebook.com/groups/stats.ebooksandpapers/

Installing MySQL
For Linux systems, if it's possible, I recommend that you install MySQL
using whatever package management system is available to you. Perhaps
go for YUM, if you're using a Red-Hat-based distribution, APT if you're
using a Debian-based distro, or SUSE's repository system. If you do not
have a package management system, you may need to install MySQL from
the source.

Windows users can install MySQL directly from their website. You should
also be aware that MySQL comes in 32-bit and 64-bit binaries, but
whatever program you download will likely install the correct version for
your system.

Here is the web page from where you can download MySQL for
Windows:

I recommend that you use the MySQL Installer. Scroll down, and when
you're looking for which binary to download, be aware that this first binary

https://www.facebook.com/groups/stats.ebooksandpapers/

says web community. This is going to be an installer that downloads
MySQL from the internet as you're doing the installation. Notice that it's
much smaller than the other binary. It basically includes everything you
need in order to be able to install MySQL. This would be the one I would
recommend you download if you're following along.

There are generally available releases; these should be stable. Next to the
generally available releases tab are the development releases; I recommend
that you do not download these unless you know what you're doing.

https://www.facebook.com/groups/stats.ebooksandpapers/

MySQL connectors
MySQL functions like a driver on your system, and other applications
interact with MySQL as if it were a driver. So, you will need to download
a MySQL connector in order to be able to use MySQL with Python. This
will allow Python to communicate with MySQL. What you will end up
doing is loading in a package, and you will start up a connection with
MySQL. The Python connector can be downloaded from MySQL's
website (go to https://dev.mysql.com/downloads/connector/).

This web page is universal for any operating system, so you will need to
select the appropriate platform, such as Linux, OS X, or Windows. You'll
need to select and download the installer best matching the system's
architecture, whether you have a 32-bit or 64-bit, and the version of
Python. And then you will use the install wizard in order to install it on
your system.

Here is the page for downloading and installing the connector:

https://dev.mysql.com/downloads/connector/
https://www.facebook.com/groups/stats.ebooksandpapers/

Notice that we can choose here which platform is appropriate. We even
have platform-independent and source code versions. It may also be
possible to install this using a package management system, such as APT
if you're using a Debian-based system, Ubuntu or YUM if you're using a
Red-Hat-based system, and so on. We have many different installers, so
we will need to be aware which version of Python we're using. It is
recommended that you use the version that is closest to the one that is
actually being used in your project. You'll also need to choose between 32-
bit and 64-bit. Then you click on download and follow the instructions of
the installer.

So, database management is a major topic; to go into everything about
database management would take us well beyond the scope of this book.
We're not going to talk about how a good database is designed; I
recommend that you go to another resource, perhaps another Packt product

https://www.facebook.com/groups/stats.ebooksandpapers/

that would explain these topics, because they are important. Regarding
SQL, we will tell you only the commands that you need to use SQL at a
basic level. There's also no discussion on permissions, so we're going to
assume that your database gives full permission to whichever user is using
it, and there's only one user at a time.

https://www.facebook.com/groups/stats.ebooksandpapers/

Creating a database
After installing MySQL in the MySQL command line, we can create a
database with the following command, with the name of the database after
it:

create database

Every command must be ended by a semicolon; otherwise, MySQL will
wait until the command is actually finished.

You can see all available databases with this command:

show databases

We can specify which database we want to use with the following
command:

use database_name

If we wish to delete a database, we can do so with the following command:

drop database database_name

Here is the MySQL command line:

Let's practice managing databases. We can create a database with the

https://www.facebook.com/groups/stats.ebooksandpapers/

following command:

create database mydb

To see all databases, we can use this command:

show databases

There are multiple databases here, some of which are from other projects,
but as you can see, the database mydb, which we just created, is shown as
follows:

If we want to use this database, the command use mydb can be used. MySQL
says the database has been changed. What this means is that when I issue
commands such as creating tables, reading from tables, or adding new
data, all of this will be done with the database mydb.

Let's say we want to delete the database mydb; we can do so with
the following command:

drop database mydb

This will delete the database.

https://www.facebook.com/groups/stats.ebooksandpapers/

Summary
In this chapter, we were introduced to Anaconda, learned why it is a useful
starting point, downloaded it, and installed it. We explored some
alternatives to Jupyter, covered managing the Anaconda package, and also
learned how to set up a MySQL database. Nevertheless, throughout the
rest of the book, we'll presume Anaconda has been installed. In the next
chapter, we will talk about using NumPy, a useful package in data
analysis. Without this package, data analysis with Python would be all but
impossible.

https://www.facebook.com/groups/stats.ebooksandpapers/

Diving into NumPY
By now you should have installed everything you need to use Python for
data analysis. Let's now begin discussing NumPy, an important package
for managing data and performing calculations. Without NumPy, there
would not be any data analysis using Python, so understanding NumPy is
critical. Our key objective in this chapter is learning to use the tools
provided in NumPy.

In this chapter, the following topics will be covered:

NumPy data types
Creating arrays
Slicing arrays
Mathematics
Methods and functions

We begin by discussing data types, which are conceptually important
when handling NumPy arrays. In this chapter, we will discuss NumPy data
types controlled by dtype objects, which are the way NumPy stores and
manages data. We'll also briefly introduce NumPy arrays called ndarray and
discuss what they do.

https://www.facebook.com/groups/stats.ebooksandpapers/

NumPy arrays
Let's now talk about NumPy arrays, which are called ndarray. These are not
the arrays you may encounter in C or C++. A better analog is matrices in
MATLAB or R; that is, they behave like a mathematical object resembling
a mathematical vector, matrix, or tensor. While they can store non-
mathematical information such as strings, they exist mainly to manage and
facilitate operations with data that is numeric in nature. ndarray are assigned
a particular data type or dtype upon creation, and all current and future data
in the array must be of that dtype. They also have more than one-dimension,
referred to as axes.

A one-dimensional ndarray is a line of data; this would be a vector. A two-
dimensional ndarray would be a square of data, effectively a matrix. A
three-dimensional ndarray would be key book data, like a tensor. Any
number of dimensions is permitted, but most ndarray are one or two-
dimensional.

dtype are similar to types in the basic Python language, but NumPy
dtype resemble the data types seen in other languages too, such as C, C++,
or Fortran, in that they are of fixed length. dtype do have a hierarchy; a dtype
usually has a string descriptor, followed by a power of 2 that determines
how large the dtype is.

Here is a list of common dtype:

https://www.facebook.com/groups/stats.ebooksandpapers/

Let's see some of the stuff that we just discussed in action. The first thing
we're going to do is load in the NumPy library. Next, we will create an
array of 1s, and they're going to be integers.

This is what the array looks like:

If we look at the dtype, we see it is int8, in other words, 8-bit integers. We
can also create an array filled with 16-bit floating-point numbers. This
array looks similar to the array of integers. There is a dot at the end of the
1s; that's somewhat of an indicator that the data contained is floating-point
rather than integer.

Let's create an array filled with unsigned integers:

Again, they're 1s and it looks similar to what we have before, but now let's
try to change some of the data. For example, we can change a number to -1
in the array int_ones and it's fine. But if I try to change it to -1 in the
unsigned integers, I will end up with 255.

Let's create an array filled with strings:

We haven't specified the dtype argument here, because usually the dtype is
guessed; a good guess is usually made, but there's no guarantee. For
example, here I want to assign a new value of Waldo to the contents of this
array. Now, this dtype means that you have strings that cannot exceed a

https://www.facebook.com/groups/stats.ebooksandpapers/

length of four. Waldo has five characters though, so when we change the
array and change its contents, we end up with Wald rather than Waldo. This
is because it can't have more than five characters; it just takes the first four:

I could specify the dtype manually and say that 16 characters are allowed;
in this case, Waldo works fine.

https://www.facebook.com/groups/stats.ebooksandpapers/

Special numeric values
In addition to dtype objects, NumPy introduces special numeric values: nan
and inf. These can arise in mathematical computations. Not A Number
(nan). It indicates that a value that should be numeric is, in fact, not
defined mathematically. For example, 0/0 yields nan. Sometimes, nan is also
used to signify missing information; for example, pandas uses this. inf
indicates a quantity that is arbitrarily large, so in practice, it means larger
than any number the computer can conceive of. -inf is also defined and it
means arbitrarily small. This could occur if a numeric operation blows up,
that is, grows rapidly without bounds.

Nothing is ever equal to nan; it makes no sense for something undefined to
be equal to something else. You need to use the NumPy function isnan to
identify nan. While the == sign does not work for nan, it does work for inf.
That said, you're better off distinguishing finite and infinite values using
the function is finite or is inf. Arithmetic involving nan and inf is defined,
but be warned that it may not get you what you want. Some special
functions are defined to help avoid issues when nan or inf is present. For
example, nan sum computes sums of iterable objects while omitting nan.
You can find a full list of such functions in the NumPy documentation. I
will mention them only when I use them.

Let's now work on an example:

1. First, we will create an array and it's going to be filled with 1, -1, and
0. Then, we divide this by 0 and see what we get. So, the moment we
do this, it complains, because obviously we're not supposed to divide
by 0. We learned this in elementary school!

That said, it does come up with numbers: 1/0 is inf, -1/0 is -inf, and
0/0 is not a number. So how can we detect special values?

https://www.facebook.com/groups/stats.ebooksandpapers/

2. Let's first run a loop that is wrong:

We're going to iterate through every possible value of vec2 and print
the results of i == np.inf, i == -np.inf, and whether I is equal to nan, i
== np.nan. What we get is a list; the first two blocks of inf and -inf
are fine, but this nan is not fine. We wanted it to detect a nan but it
did not do so. So, let's try it using the is nan function:

https://www.facebook.com/groups/stats.ebooksandpapers/

This does in fact work; we were able to detect the nan.

3. Now, let's detect finite versus infinite:

https://www.facebook.com/groups/stats.ebooksandpapers/

Not surprisingly, inf is not finite. Neither is -inf. But nan counts
as neither finite or infinite; it is undefined. Let's see what happens
when we do inf + 1, and inf * -1, and nan + 1. We always get nan.

If we raise 2 to the power of negative infinity, what we get is 0. But
if we raise it to infinity, we get infinity. And inf - inf is not equal
to any specific number:

4. Now, let's create an array and fill it with a number, 999. If we were to
raise this array to itself, in other words, 999 to the power of 999, what
we end up with is inf:

This is too large a number for these programs to handle. That said,
we know that this number is not actually infinite. It is finite, but to
the computer it is so large that it may as well be infinite.

5. Now, let's create an array and give the first element of this array as
nan. If we sum up the elements of this array, what we get is nan
because nan + anything is nan:

https://www.facebook.com/groups/stats.ebooksandpapers/

But, if we use the function nansum, the nans will be ignored and we'll get a
reasonable value of 4.

https://www.facebook.com/groups/stats.ebooksandpapers/

Creating NumPy arrays
Now that we have discussed NumPy data types and have been briefly
introduced to NumPy arrays, let's talk about how we can create NumPy
arrays. In this section, we will create NumPy arrays using various
functions. There are functions that create what are known as empty ndarray;
functions for creating ndarray filled with 0s, 1s, or random numbers; and
functions for creating ndarray using data. We will discuss all of these, along
with saving and loading NumPy arrays from disk. There are a few ways to
create arrays. One way is to use the array function, where we give an
iterable object or a list of iterable objects, from which an array will be
generated.

We will do this using lists of lists, but these could be lists of tuples, tuples
of tuples, or even other arrays. There are ways to automatically create
arrays filled with data as well. For example, we can use functions such
as ones, zeros, or randn; the latter is filled with randomly generated data.
These arrays require passing a tuple that determines the shape of an array,
that is, how many dimensions the array has and how long each dimension
is. Each creates arrays that are considered empty, containing no data of
interest. This is usually garbage data that is made up of whatever bits were
in the memory location where the array was created.

We can specify the dtype parameter if we want, but if we do not, the dtype
will either be guessed or floating-point. Notice the last line in the
following table:

https://www.facebook.com/groups/stats.ebooksandpapers/

It's a mistake to think that you can copy an arr1 by assigning it to a new
variable. Instead, what you effectively get is a new pointer to the same
data. If you want a new array with the same data that is completely
independent of its parent, you will need to use the copy method, as we will
see.

https://www.facebook.com/groups/stats.ebooksandpapers/

Creating ndarray
In the following notebook, we create an ndarray. The first thing we're going
to do is create a vector of 1s. Notice the tuple that is being passed; it
contains only one number, 5. Therefore, it will be a one-dimensional ndarray
with five elements:

It was automatically assigned the dtype floating-point 64:

If we want to convert this to an integer, we can attempt to do it the
following way first, but the result will be garbage:

You need to be very careful when you're converting a dtype.

The correct way to do this is to first create an original vector consisting of
five 1s, and then create a brand new array using those elements as the
input. The following is the result:

https://www.facebook.com/groups/stats.ebooksandpapers/

Notice that vec1, in fact, has the correct data type. We could, of course,
have circumvented this by specifying the dtype that we wanted initially. In
this case, we wanted 8-bit integers. This is the result:

Now, let's make a cube of 0s. Here, we're going to create an array that'll be
three-dimensional; that is, we have rows, we have columns, and we have
slabs.

So, we have two rows, two columns, and two slabs, in that order, and we're
going to make this into 64-bit floating-point numbers. Here is the result:

The top part in the result will be considered one slab, and the bottom part
will be considered the other slab.

Now let's create a matrix filled with random data. In this case, we're going
to have a square matrix with three rows and three columns, created using
the randn function, which is a part of the random module of NumPy:

https://www.facebook.com/groups/stats.ebooksandpapers/

The first number that we pass is the number of rows, and the second number is the
number of columns. You could have passed a third number that will determine the
number of slabs, and a fourth, a fifth, and so on to specify the number of dimensions
you want, and how long you want each dimension to be.

Now we're going to create 2 x 2 matrices with names that we've chosen,
and 2 x 2 x 2 arrays containing numbers. So here is a matrix containing
just names:

And we can see that dtype is U5, that is, five-letter-long Unicode strings.

We can also use tuples to create our arrays:

In this case, we have an array with multiple levels, so this is going to end
up being a three-dimensional array. (1, 3, 5) is going to be the first row of
the first slab of this array, and (2, 4, 6) will be the second row of the first
slab. [(1, 3, 5), (2, 4, 6)] determines the first slab. [(1, np.nan, 1), (2, 2, 2)]
determines the second slab. In all, we end up with a cube of data:

https://www.facebook.com/groups/stats.ebooksandpapers/

As we covered earlier, if we wish to copy the contents of an array, we need
to be careful.

Consider the following example:

For example, we might think naively that this will create a new copy of
mat2, storing it in mat2_copy. But watch what happens if we were to change
an entry in the supposed copy of this array, or change an entry of the
original parent array. In mat2, if we change the element in the first row and
the first column (that is element (0,0)) to liam, this is the result:

If we look at the copy, we will notice that the change has affected the copy
as well:

So if we want an independent copy, we need to use the copy method. Then,
when we change the 0,0 element of mat2, it does not affect the copy method:

https://www.facebook.com/groups/stats.ebooksandpapers/

We can also make changes to the copy and it will not affect the parent.

Here is a list of common ways to save ndarray objects:

You is recommended to use the save, savez, or savetxt functions. I've shown
the common syntax for these functions in the preceding table. In the case
of savetxt, if you want a comma-separated file, simply set the delimiter
argument to the comma character. Also, savetxt can save a compressed text
file if the name of the file ends with .gz, thus saving a step as you don't
need to compress the text file yourself later. Be aware that, unless you
write a full file path, the file specified will be saved in the working
directory.

Let's see how we might be able to save some arrays. The first thing that we
should probably do is check what our working directory is:

Now in this case, I am automatically in the working directory that I want.

https://www.facebook.com/groups/stats.ebooksandpapers/

But if I wished, I could change the working directory with the cd
command, and then I would, in fact, have that directory as my working
directory:

That said, let's create an npy file, which is a native file format for NumPy.
We can save the array in this file format using the save function from
NumPy:

What we will have is an npy file named arr1. This is, in fact, a binary file in
our working directory.

If we wish to load the array that is saved in this file, we can do so using the
load function:

We can also create a CSV file that holds the same information in mat1. For
example, we can save it with the following function:

We can see what the contents of mat1.csv look like using this code:

https://www.facebook.com/groups/stats.ebooksandpapers/

The columns are separated by commas, and rows are on new lines. We
then close this file:

Now, clearly if we can save ndarray, we should also be able to load them.
Here are some common functions for loading ndarray:

These functions align closely to those used to save ndarray. You will need
to save the resulting ndarray in Python. If you are loading from a text file,
be aware that it is not necessary that the array should be created by NumPy
in order for an ndarray to be created. This allows you to create NumPy
ndarray in, say, a text editor or Excel if you save to a CSV. Then you can
load them into Python. I presume that the data in the file you are loading is
amenable to an ndarray; that is, it has a square format and consists of data of

https://www.facebook.com/groups/stats.ebooksandpapers/

only one type, so no mixture of strings and numbers.

Data that is multitype can be handled by ndarray, but at that point you
should be using a pandas DataFrame, which we will be discussing in a
later section. So if I wish to load the contents of the file that I have just
created, I can do so with the loadtxt function, and this will be the result:

https://www.facebook.com/groups/stats.ebooksandpapers/

Summary
In this chapter, we started by introducing NumPy data types. We then
quickly moved on to discuss NumPy arrays, called ndarray objects, which
are the main objects of interest in NumPy. We discussed how to create
these arrays from programmer input, from other Python objects, from files,
and even from functions. We proceeded to discuss how mathematical
operations are performed on ndarray objects, from basic arithmetic to full-
blown linear algebra.

In the next chapter, we will discuss some important topics: slicing
ndarray objects arithmetic and linear algebra with arrays, and employing
array methods and functions.

https://www.facebook.com/groups/stats.ebooksandpapers/

Operations on NumPy Arrays
Now that we know how to create NumPy arrays, we can discuss the
important topic of slicing NumPy arrays in order to access and manipulate
subsets of array data. In this chapter, we will cover what every NumPy
user should know about array slicing, arithmetic, linear algebra with
arrays, and employing array methods and functions.

https://www.facebook.com/groups/stats.ebooksandpapers/

Selecting elements explicitly
If you know how to select subsets of Python lists, you know most of what
you need to know about ndarray slicing. The elements of the array being
indexed that correspond to the elements of the indexing object are returned
in a new array. The most important aspect of indexing is to remember that
there is more than one dimension, and the indexing method should be able
to handle these other dimensions.

Remember the following points while selecting elements explicitly:

Separate the indexing objects for different dimensions with a comma; the
object before the first comma shows how the first dimension is indexed.
After the first comma comes the index for the second dimension, after the
second comma comes the index for the third dimension, and so on.

https://www.facebook.com/groups/stats.ebooksandpapers/

Slicing arrays with colons
Indexing ndarray objects using colons works like indexing lists using
colons. Just remember there are multiple dimensions now. Remember that
when the spot before or after the colon is left blank, Python treats the
index as extending to either the beginning or the end of the dimension. A
second colon can be specified to instruct Python to, say, skip every other
row or reverse the order of rows, depending on the number under the
second colon.

The following points need to be remembered when slicing arrays with
colons:

Let's see an example. First we load in NumPy and create an array:

Notice that what we created is a three-dimensional array. Now, this array
is a bit complicated, so let's work with a two-dimensional 3 x 3
array instead:

https://www.facebook.com/groups/stats.ebooksandpapers/

We used the copy method here. A new object was returned, but that object
isn't a new copy of the array; it is a view of the array's contents. So if we
wish to create an independent copy, we will need to use the copy method
when slicing as well, as we have seen before.

If we want to change an entry in this new array, say the second row and
the second column's contents to Atilla, then we change this new array:

But we have not changed the original contents:

So, these are two independent copies of the data in the first array. Now
let's explore some other slicing schemes.

Here, we see indexing using lists. What we do is create a list that
corresponds to the first coordinate of every element from the object we
wish to capture, and then we have a list for the second coordinate. So 1
and 0 correspond to one element that we wish to select; if this were a
three-dimensional object, we would need a third list for the third
coordinate:

https://www.facebook.com/groups/stats.ebooksandpapers/

We select elements from the upper-left corner using slicers:

Now, let's select elements from the middle column:

And, let's select elements from the middle column but we will not flatten
the matrix and we'll keep its shape:

This is a one-dimensional object, but here we want a two-dimensional
object. While it has only one column, it has one column and one row, as
opposed to having only one row and columns don't make sense. Now let's
select the last two rows of the middle column:

We reverse the row order:

https://www.facebook.com/groups/stats.ebooksandpapers/

If you look at the original object, you will see that these rules are
happening in reverse order (compared to how they originally were
ordered) and this means selecting odd number columns:

We can go to a more complex three-dimensional array and see similar
slicing schemes. For example, here's a 2 x 2 x 2 corner cube:

Here is the middle slice:

We can see that this middle slice is a two-dimensional array. So, if we
wish to preserve the dimensionality, another way to do so would be to use
the new axis object from NumPy to insert an extra dimension:

https://www.facebook.com/groups/stats.ebooksandpapers/

And we see that this object is, in fact, three-dimensional:

This is in spite of the fact that the length of one of its dimensions is 1.

https://www.facebook.com/groups/stats.ebooksandpapers/

Advanced indexing
Let's now discuss more advanced indexing techniques. We can index
ndarray objects using other ndarray. We can slice an ndarray using either
ndarray objects containing integers that correspond to the indices of the
ndarray we wish to select, or ndarray objects of Boolean values, where the
value true means a cell should be included in the slice.

Select the elements of arr2 that are not Wayne, and this is the result:

Wayne is not included in the selection, and this was the array that was
generated to do that indexing:

It is True everywhere except where the contents were Wayne.

Another more advanced technique is to select using arrays of integers that
identify which elements we want. So here, we're going to create two arrays
that will be used for this slicing:

This first 0 in the first array means the first coordinate is zero, and the first

https://www.facebook.com/groups/stats.ebooksandpapers/

0 in the second array means that second coordinate is zero, as specified by
the order these two arrays are listed in. So, in the first row and first column
of the resulting array, we have the element [0, 0]. In the first row and
second column, we have the element [0, 2] from the original array. Then,
in the second row and first column, we have the element that's in the third
row and first column of the original array. Notice that this was Wayne.

Then we have the element that was in the third row and the third column
of the original array, which corresponds to Joey.

Let's see this with more complex arrays. For example, we can see all
entries of arr1 that are not Curtis:

This is what the indexing array looks like:

Here, we see a much more complex slicing scheme:

https://www.facebook.com/groups/stats.ebooksandpapers/

idx0 tells how to pick first coordinates, idx1 tells how to pick second
coordinates, and idx2 tells how to pick third coordinates. In this case, we
are selecting objects in each of the quarter elements of the original array.

So, I have actually written some code that can actually demonstrate which
elements are going to show up in the new array, that is, what the
coordinates from the original array are for elements of the new array.

For example, what we got was a three-dimensional matrix, 2 x 2 x 2. If we
wanted to know what was in the second row, the second column, and the
first slab of the sliced object, we could use code like this:

That was element 2, 0, 2 of the original array.

https://www.facebook.com/groups/stats.ebooksandpapers/

Expanding arrays
The concatenate function allows binding arrays together along a common
axis, using the syntax seen on the screen. This approach requires that the
arrays have similar shapes along the axes not used for binding. The result
is a brand new ndarray that is the product of this gluing of arrays together.
Other similar functions exist for this purpose, such as stack. We will not
cover all of them.

Let's suppose that we want to add more rows to arr2. Use the following
code to do this:

We create a brand new array. We don't need to use the copy method in this
situation. This is the result:

We have added a fourth row to this array, binding a new array with the
data (names in the array). It is still a two-dimensional array. For example,
see the array in the following example. You can clearly see this is two-
dimensional but has a single column, whereas the previous one has a
single row, and this is the result when we add in this new column:

We will continue with mathematical operations with arrays.

https://www.facebook.com/groups/stats.ebooksandpapers/

Arithmetic and linear algebra with
arrays
Now that we have seen how to create and access information with NumPy
arrays, let's cover some of the numerical operations you can do with
arrays. In this section, we will be discussing arithmetic using NumPy
arrays; we also discuss using NumPy arrays for linear algebra.

https://www.facebook.com/groups/stats.ebooksandpapers/

Arithmetic with two equal-shaped
arrays
Arithmetic with NumPy arrays is always done component-wise. This
means that, if we have two matrices that have equal shapes, an operation
such as addition is done by matching corresponding components in the two
matrices and adding them. This is true for any arithmetic operation, be it
addition, subtraction, multiplication, division, powers, or even logical
operators.

Let's see an example. First, we create two arrays of random data:

https://www.facebook.com/groups/stats.ebooksandpapers/

While I explain these ideas in terms of arithmetic involving two arrays, it
can involve arrays and scalars as we see here, where we add 100 to every
element in arr1:

Next, we divide every element in arr1 by 2:

Next, we raise every element in arr1 to the power of 2:

https://www.facebook.com/groups/stats.ebooksandpapers/

And next, we multiply the contents of arr1 and arr2:

Notice that both arr1 and arr2 have similar shapes. Here, we do an even
more complex computation involving these two arrays:

Notice that this computation ended up producing inf and nan.

https://www.facebook.com/groups/stats.ebooksandpapers/

Broadcasting
So far, we have worked with two arrays with equal shape. In fact, this is
not necessary. While we cannot necessarily add two arrays of any shape,
there are situations where we can reasonably perform an arithmetic
operation on arrays of different shapes. In some sense, information in a
smaller array is treated as if it belongs to an array of equal shapes, but with
repeated values. Let's see some of this broadcasting behavior in action.

Now, recall that the array arr1 is 3 x 3 x 3; that is, it has three rows, three
columns, and three slabs. Here, we create an object, arr3:

This object has the shape (1, 1, 3). So, this object has the same number of
slabs as arr1, but it has only one row and one column. This is a situation
where broadcasting can be applied; in fact, this is the result:

I had column 0 and column 2 as 0, and the middle column as 1. So the
result is that I am effectively selecting the middle column and making the
other two columns 0. This object was effectively replicated so that it
looked as if I was multiplying arr1 by an object, where there are 0s in the
first column, 0s in the third column, and 1s in the second column.

Now, let's see what happens if we switch up the dimensions of this object;

https://www.facebook.com/groups/stats.ebooksandpapers/

so now it has one column, one slab, and three rows:

And this is the result:

Now, let's do another transposition. We're going to end up multiplying an
object that has three slabs, and the middle slab is filled with 1s. So when I
do the multiplication, this is what happens:

https://www.facebook.com/groups/stats.ebooksandpapers/

Linear algebra
Be aware that NumPy is built to support linear algebra. A 1D NumPy array
may correspond to a linear algebra vector; a 2D array to a matrix; and 3D,
4D, or all ndarray to tensors. So, when appropriate, NumPy supports linear
algebra operations, such as matrix products, transposition, matrix
inversion, and so on, for arrays. Most NumPy linear algebra functionality
is supported in the linalg module. The following is a list of commonly used
NumPy linear algebra functions:

Some of these are ndarray methods, others are in the linalg module you need
to import. So we've actually been demonstrating transpose up to this point
in earlier examples. Notice that we were using transpose here to swap
around rows and columns.

https://www.facebook.com/groups/stats.ebooksandpapers/

This is transposition in arr4:

I said arr4 was arr3 and we switched around the axes. So axis 0 would still
be axis 0, but axis 1 would be axis 2 of the old array, and axis 2 would be
axis 1 of the old array.

Now let's see some other examples. Let's see a demonstration of reshape.
So the first thing we do is create an array consisting of eight elements:

We can rearrange the contents of this array so that it fits into an array of a
different shape. Now, what is required is that the new array has the same
number of elements as the original array. So, create a 2 x 4 array as
follows:

It has eight elements, just as the original array did. Also, it created an array
where the first row consists of the first four elements of the original array,
and the second row contains the remaining elements. I could do a similar
manipulation with arr6:

You can kind of guess by looking at this array how the logic was done.

https://www.facebook.com/groups/stats.ebooksandpapers/

Now let's see some more complex linear algebra functionality. Let's load
in, from the datasets module of the Scikit-Learn library, a function called
load_iris, so that we can look at the classic Iris dataset:

So the following is a transpose of iris:

Make a copy of this array, as follows:

https://www.facebook.com/groups/stats.ebooksandpapers/

I also want to create a new array that consists of only the last column of
the copy of Iris, and I create another array consisting of the remaining
columns and also a column of 1s.

Now, we're going to create a new array that will correspond to a matrix
product. So I say X squared is X transposed and multiplied by X, and this
is the resulting array:

It is 4 x 4. Now let's get an inverse, the matrix X squared.

This is going to be the matrix inverse:

https://www.facebook.com/groups/stats.ebooksandpapers/

I then take this inverse and then multiply it with the product of the
transpose of X with the matrix Y, which is that one-column matrix that I
created earlier. And this is the result:

This is not some arbitrary sequence of computations; it actually
corresponds to how we solve for coefficients of a linear model. The
original matrix, y = iris_cp[:, 3], corresponds to the value of a variable that
we want to predict, using the contents of X; but for now I just want to
demonstrate some of the linear algebra. Whenever you encounter a
function that fits a linear model, you now know all the code that you need
to write this function yourself.

Another thing that we often do in data analysis is find the SVD
decomposition of a matrix, and the SVD decomposition is provided in this
linear algebra function:

So the last line corresponds to the spectral values. Spectral value
decomposition (SVD) and the values in the output are the spectral values
of a matrix. The following are the left singular vectors:

https://www.facebook.com/groups/stats.ebooksandpapers/

These are the right singular vectors:

https://www.facebook.com/groups/stats.ebooksandpapers/

Employing array methods and
functions
We will now discuss the use of NumPy array methods and functions. In
this section, we will look at common ndarray functions and methods. These
features allow you to perform common tasks using a clean, intuitive
syntax, going beyond the notion of Pythonic code.

https://www.facebook.com/groups/stats.ebooksandpapers/

Array methods
NumPy ndarray functions include methods that facilitate common tasks,
such as finding the mean of a dataset or multiple means of multiple
datasets. We can sort array rows and columns, find mathematical and
statistical measures, and much more. There are so many functions that do
so many things! I won't list them all. In the following, we see the functions
needed for common administrative tasks, such as interpreting arrays as
lists or sorting array contents:

Next, we see common statistical and mathematical methods, such as
finding the mean or sum of array contents:

https://www.facebook.com/groups/stats.ebooksandpapers/

We also have methods for arrays of Boolean values:

Let's see some of these in a Notebook. Import NumPy and create an array
of random values:

https://www.facebook.com/groups/stats.ebooksandpapers/

Let's see some of the manipulations we can do on this array. One thing we
can do is coerce the array into a list:

We can flatten the array so that it goes from being a 4 x 4 array to a 1D
array, as follows:

We can also fill an empty array with the fill method. Here, I create an
empty array that is intended for strings, and I fill it with the string Carlos:

We can take the contents of an array and sum them all together:

They can also sum along axes. Next, we sum along rows:

https://www.facebook.com/groups/stats.ebooksandpapers/

And in the following, we sum along columns:

Cumulative sums allow you to perform the following, instead of summing
the entire contents of, say, the rows:

Sum the first row
Then sum the first and second rows
Then the first, second, and third rows
Then the first second, third, and fourth rows, and so on

This can be seen next:

https://www.facebook.com/groups/stats.ebooksandpapers/

Vectorization with ufuncs
ufuncs are special NumPy functions designed to work with arrays; in
particular, they support vectorization. A vectorized function is applied
component-wise to the elements of an array. These are often highly
optimized functions, running under the hood on a faster language, such as
C.

In the following, we see some common ufuncs, many of which are
mathematical:

Let's explore some applications of ufuncs. The first thing we're going to do
is find the sign of every element in arr1, that is, whether it is positive,
negative, or zero:

Then with this sign, I multiply this array with arr1. The result is as if we
took the absolute value of arr1:

https://www.facebook.com/groups/stats.ebooksandpapers/

Now, we find the square root of the contents of the product. Since every
element is non-negative, the square root is well-defined:

https://www.facebook.com/groups/stats.ebooksandpapers/

Custom ufuncs
As mentioned earlier, we can create our own ufuncs. One way to create
ufuncs is to use existing ufuncs, vectorized operations, array methods, and so
on (that is, all of Numpy's existing infrastructure) to create a function that,
component-wise, produces the results we want. Let's say that we didn't
want to do this for some reason. If we have an existing Python function,
and we merely want to make that function vectorized so that it applies to
an ndarray component-wise, we can create a new vectorized version of the
function with NumPy's vectorize function. Vectorize takes a function as
input and gives a vectorized version of the function as output.

Vectorize is okay to use if you don't care about speed, but the function
created with vectorize is not necessarily fast. In fact, the former approach
(using NumPy's existing functions and infrastructure to create your
vectorized function) produces ufuncs many times faster.

The first thing we're going to do is define a function that works for a single
scalar value. What it does is truncate, so if a number is below zero, that
number is replaced with zero:

This function is not vectorized; let's attempt to apply this function to our
matrix arr1:

https://www.facebook.com/groups/stats.ebooksandpapers/

Then, what we would hope is that every quantity that is false in this matrix
is zero instead. But when we attempt to apply this function, it simply
doesn't work:

What we need to do is create a ufunc that does the same job as the original
function. So we use vectorize and can create a vectorized version that
works as expected, but it is not very efficient:

We can see this by creating a much faster version that uses NumPy's
existing infrastructure, such as indexing based on Boolean values, and
assigning values to zero. Here is the resulting ufunc:

https://www.facebook.com/groups/stats.ebooksandpapers/

Let's compare the speed of these two functions. The following is the
vectorized version created with vectorize:

Next is the one that is created manually:

Notice that the first function was much slower than the second one, which
was created manually. In fact, it was almost 10 times slower.

https://www.facebook.com/groups/stats.ebooksandpapers/

Summary
In this chapter, we started off by selecting elements in an array explicitly.
We looked into advanced indexing, and expanding arrays. We also
covered some arithmetic and linear algebra with arrays. We discussed
employing array methods and functions and vectorization with ufuncs. In
the next chapter, we will begin learning about another influential package
called pandas.

https://www.facebook.com/groups/stats.ebooksandpapers/

pandas are Fun! What is pandas?
We've talked about NumPy in previous chapters. Now let's move on to
pandas, a well-designed package for storing, managing, and manipulating
data in Python. We'll start this chapter by discussing what pandas is and
why people use it. Next, we'll discuss the two most important objects
provided by pandas: series and DataFrames. We will then cover how to
subset your data. In this chapter, we'll get a brief overview of what pandas
is, and why it's popular.

https://www.facebook.com/groups/stats.ebooksandpapers/

What does pandas do?
pandas introduces two key objects to Python, series and DataFrames, with
the latter arguably being the most useful, but pandas DataFrames can be
thought of as series bound together. A series is a sequence of data, like a
list in basic Python or a 1D NumPy array. And, like the NumPy array, a
series has a single data type, but indexing with a series is different. With
NumPy there is not much control over row and column indices; but with a
series, each element in the series must have a unique index, name, key,
however you want to think about it. The index could consist of strings,
such as cities in a nation, with the corresponding elements of the series
denoting some statistical value, such as the city's population; or dates, such
as trading days for a stock series.

A DataFrame can be thought of as multiple series of common length, with
a common index, bound together in a single tabular object. This object
resembles a NumPy 2D ndarray, but it is not the same thing. Not all
columns need to be of the same data type. Going back to the cities
example, we could have a column containing population and another
containing the state or province in which the city is located, and yet
another column containing Boolean values to identify whether the city is a
state or province capital—a tricky feat to pull off with just NumPy. Each
of these columns likely has a unique name, a string to identify the
information they contain; perhaps this can be thought of as a variable.
With this object, we can store, access, and manipulate our data easily and
efficiently.

In the following Notebook, we're going to see a preview of what we can do
with series and DataFrames:

We're going to load in both NumPy and pandas, and we are going to look
at reading a CSV file in both NumPy and pandas. We can, in fact, load
CSV files in NumPy, and they can have different types of data, but in

https://www.facebook.com/groups/stats.ebooksandpapers/

order to manage such files, you need to create a custom dtype to resemble
such data. So here we have a CSV file, iris.csv, which contains the Iris
dataset.

Now, if we wish to load this in, we need to account for the fact that every
row has data that isn't necessarily of the same type. In particular, the last
column is for species, and this is not numeric but instead a string. So we
need to create a custom dtype, which we do here, calling this new dtype
schema:

We can load in this dataset with the NumPy function loadtxt, giving the
dtype as the schema object, and setting the delimiter to comma to indicate it is
a CSV file. We can, in fact, read this dataset in:

Note that this dataset must be in your working directory. If we were to
look at this dataset, this is what we would notice:

https://www.facebook.com/groups/stats.ebooksandpapers/

This output screenshot is just for representation, and the actual output
contains more lines. Every row of this dataset is a new entry in this one-
dimensional NumPy array. This is, in fact, a NumPy array:

We select the first five rows with the following command:

We can select the first five rows and specify that we want to work with
just sepal lengths, which are the first elements in each row:

And we can even select petal length and species:

But there is a better way to do this with pandas. In pandas, what we will do
is use the read_csv function, which will automatically parse the CSV file
correctly:

https://www.facebook.com/groups/stats.ebooksandpapers/

Look at this dataset and notice that, with Jupyter notebooks, it's presented
much more readably. This is, in fact, a pandas DataFrame:

The first five rows can be seen using the head function:

We can also see the sepal length, by specifying it as if it were an attribute
of this DataFrame:

https://www.facebook.com/groups/stats.ebooksandpapers/

What we get is actually a series. We can select a subset of this DataFrame,
going again with the first five rows and selecting the columns petal_length
and species:

With that said, pandas, at its core, is built on top of NumPy. In fact, we can
see the NumPy object that pandas is using to describe its contents:

And in fact, that NumPy object we created earlier can be used to construct
a pandas DataFrame:

https://www.facebook.com/groups/stats.ebooksandpapers/

Now it's time to take a good look at pandas series and DataFrames.

https://www.facebook.com/groups/stats.ebooksandpapers/

Exploring series and DataFrame
objects
We'll start looking at pandas series and DataFrame objects. In this section,
we'll start getting familiar with pandas series and DataFrames by looking
at how they are created. We'll start with series since they are the building
block of DataFrames. Series are one-dimensional array-like objects
containing data of a single type. From this fact alone, you'd rightly
conclude that they're very similar to one-dimensional NumPy arrays, but
series have different methods than NumPy arrays that make them more
ideal for managing data. They can be created with an index, which is
metadata identifying the contents of the series. Series can handle missing
data; they do so by representing missing data with NumPy's NaN.

https://www.facebook.com/groups/stats.ebooksandpapers/

Creating series
We can create series from array-like objects; these include lists, tuples, and
NumPy ndarray objects. We can also create a series from a Python dict.
Another way to add an index to a series is to create one by passing either
an index or an array-like object of unique hashable values to the index
argument of the create method for the series.

We can also create an index separately. Creating an index is a lot like
creating a series, but we require all values to be unique. Every series has
an index; if we do not assign an index, then a simple numeric sequence
starting from 0 will be used as the index. We can give a series a name by
passing a string to the name argument of the series' create method. We do
this so that, if we were to create a DataFrame using this series, we can
automatically assign a column or row name to the series, and so we can
tell what date the series is describing.

In other words, the name provides useful metadata, and I would
recommend setting this argument whenever possible, within reason. Let's
see a working example. Notice that we import the series and DataFrame
objects directly into the namespace:

We do this very frequently because these objects are used exhaustively.
Here, we create two series, one consisting of the numbers 1, 2, 3, 4, and
another consisting of the letters a, b, and c:

https://www.facebook.com/groups/stats.ebooksandpapers/

Notice that an index was automatically assigned to both of these series.

Let's create an index; this index consists of names of cities in the United
States:

We are going to create a new series consisting of numbers called pops, and
we will assign this index to the series we created. The population of these
cities is in thousands. I got this data from Wikipedia. We also assign the
name Population to this series. This is the result:

Notice that I inserted a missing value; this is the population of Phoenix,
which we do know, but I felt like adding a little extra just to demonstrate.
We can also create a series using a dictionary. In this case, the keys of the

https://www.facebook.com/groups/stats.ebooksandpapers/

dictionary are going to be the index of the resulting series, and the values
will be the values of the resulting series. So here, we add state names:

I also create a series using a dictionary and I populate it with the areas of
these respective cities:

Now I would like to draw your attention to the fact that these series are not
of equal length, and furthermore they don't all contain the same keys. They
don't all contain the same indices. We're going to use these series later, so
keep this in mind.

https://www.facebook.com/groups/stats.ebooksandpapers/

Creating DataFrames
Series are interesting, primarily because they are used to build pandas
DataFrames. We can think of a pandas DataFrame as combining series
together to form a tabular object, with rows and columns being the series.
We can create DataFrames in a variety of ways and we will be
demonstrating some here. We can give a DataFrame an index. We can also
manually specify the names of columns by setting the columns argument.
Choosing column names follows the same rules as choosing index names.

Let's see some of the ways we can create DataFrames. The first thing we
will do is create DataFrames, and we are not going to care too much about
their indices. We can create a DataFrame from a NumPy array:

Here, we have a three-dimensional NumPy array populated with numbers.
We can simply create a DataFrame from this object by passing this object
as the first argument to the DataFrame creation function:

If we want to, we can add indices and column names to this DataFrame:

https://www.facebook.com/groups/stats.ebooksandpapers/

We create DataFrames from a list of tuples:

We can also create DataFrames from a dict:

Now, suppose we want to create a DataFrame and we pass it a dict, but the
dict does not consist of lists that are all of the same length. This will
produce an error:

The reason is that an index will need to be assigned to these values, but the
function does not know how to assign missing information. It does not
know how to align the data in these lists.

However, if we were to pass a dictionary (and the values of the dictionary
are series of unequal lengths but these series have an index), it would not
produce an error:

https://www.facebook.com/groups/stats.ebooksandpapers/

Instead, since it knows how to line up elements in the different series, it
will do so and fill in any spots where information is missing with NaN.

Now let's create a DataFrame that contains information about series, and
you may recall that these series are not of the same length. Furthermore,
they don't all contain the same index values, and yet we are able to create a
DataFrame from them:

However, in this situation, this is not the DataFrame that we want. It is of
the wrong orientation; the rows are what we would interpret as variables,
and the columns are what we would interpret as keys. So, we can create
the DataFrame using a dictionary in the method that we actually want:

https://www.facebook.com/groups/stats.ebooksandpapers/

Or we can use the transpose method, the T method, as with a NumPy array,
to get the DataFrame into the proper orientation:

https://www.facebook.com/groups/stats.ebooksandpapers/

Adding data
After creating a series or DataFrame, we can add more data to it using the
concat function or append method. We pass an object to the method
containing the data that will be added to the existing object. If we are
working with a DataFrame, we may be able to append new rows or new
columns. We can add new columns with the concat function, and use a dict,
a series, or DataFrame for concatenating.

Let's see how we can add new information to the series or DataFrame.
Let's, for example, add two new cities to the pops series, for Seattle and
Denver. This is the result:

Notice that this was not done in place; that is, a new series was returned
rather than changing the existing series. And I'm going to append new
rows to this DataFrame by creating a DataFrame with the data that I want:

https://www.facebook.com/groups/stats.ebooksandpapers/

I can also add new columns to this DataFrame by effectively creating
multiple DataFrames.

I have a list, and in this list I have two DataFrames. I have df, and I have
the new DataFrame containing the columns that I wish to add. This will
not change the existing DataFrames, but instead it will create a brand new
DataFrame, which we then need to assign to a variable:

https://www.facebook.com/groups/stats.ebooksandpapers/

https://www.facebook.com/groups/stats.ebooksandpapers/

Saving DataFrames
Suppose we have a DataFrame; call it df. We can easily save the
DataFrame's data. We can pickle the DataFrame (which saves it in a
format commonly used in Python) with the to_pickle method, passing the
filename as the first parameter.

We can save a CSV file with to_csv, a JSON file with to_json, or an HTML
table with to_html. Many other formats are available; for example, we can
save data in Excel spreadsheets, Stata, DAT files, HDF5 format, and SQL
commands to insert it into a database, even copied to your clipboard.

We may discuss other methods along with how to load data in different
formats later.

In this example, I save the data in the DataFrame to a CSV file:

Hopefully, by now, you are more familiar with what series and
DataFrames are. Next, we will talk about subsetting data in a DataFrame
so that you can get the information you need fast and easily.

https://www.facebook.com/groups/stats.ebooksandpapers/

Subsetting your data
Now that we can make pandas series and DataFrames, let's work with the
data they contain. In this section, we will see how to get and manipulate
the data we store in a pandas series or DataFrame. Naturally, this is an
important topic; these objects will be useless otherwise.

You should not be surprised that there are many variations on how to
subset DataFrames. We will not cover every idiosyncrasy here; refer to the
documentation for an exhaustive discussion. But we will discuss the most
important functionality every user of pandas should be aware of.

https://www.facebook.com/groups/stats.ebooksandpapers/

Subsetting a series
Let's first look at series. Since they are similar to DataFrames, there are
key lessons that apply there. The simplest way to subset a series is with
square brackets, and we can do so as we would subset a list or NumPy
array. The colon operator does work here, but there's more that we can do.
We can select elements based on the index of the series, as opposed to just
the position of the elements in the series, following many of the same rules
as if we were working with integers indicating the position of elements in
the series.

The colon operator also works, and largely as expected. Select all elements
between two indices:

But unlike working with integer positions, the colon operator does include
the endpoint. A particularly interesting case is when indexing with
Booleans. I'll show what such a use might may look like. This can be
handy to get data in a particular range. If we can get an array-like object,
such as a list, NumPy array, or another series, to produce Booleans, this
object can be used for indexing. Here is some example code demonstrating
indexing a series:

https://www.facebook.com/groups/stats.ebooksandpapers/

So far, integer indexing behaves as expected, along with indexing with
Booleans:

The only really interesting example is when we use the colon operator with
indices; notice that all betas and delta are included, deltas in particular.
This is unlike the behavior we normally associate with the colon operator.
Here is an interesting example:

We have a series, and that series has an index of integers that is not in order

https://www.facebook.com/groups/stats.ebooksandpapers/

from 0 to 4, as would be typical. Now, the order is mixed up. Consider the
indexing we requested. What will happen? On the one hand, we may say
that the last command will select based on the indices. So it will select
elements 2 and 4; there is nothing between them. But on the other hand, it
might use the integer positions to select the third and fourth elements of
the series. In other words, it's positions 2 and position 3 when we count
from 0, as you would expect if you were to treat srs2 as a list. Which
behavior will prevail? It's not all that clear.

https://www.facebook.com/groups/stats.ebooksandpapers/

Indexing methods
pandas provides methods that allow us to clearly state how we want to
index. We can also distinguish between indexing based on values of the
index of the series, and indexing based on the position of objects in the
series, as would be the case if we were working with a list. The two
methods we'll focus on are loc and iloc. loc focuses on selecting based on
the index of the series, and if we try to select key elements that don't exist,
we will get an error. iloc indexes as if we were working with a Python list;
that is, it indexes based on integer position. So, if we were to try to index
with a non-integer in iloc, or try to select an element outside of the range
of valid integers, an error will be produced. There is a hybrid method, ix,
that acts like loc, but if passed input that cannot be interpreted with respect
to the index, it will act like iloc. Because of the ambiguity about how ix
will behave, I recommend sticking with loc or iloc most of the time.

Let's return to our example. It turns out that square brackets, in this case,
index like iloc; that is, they index based on integer position as if srs2 were a
list. If we wanted to index based on the index of srs2, we could use loc to
do so, getting the other possible result. Again, notice that in this case, both
endpoints were included. This is unlike the behavior we normally associate
with the colon operator:

https://www.facebook.com/groups/stats.ebooksandpapers/

Slicing a DataFrame
Having discussed slicing a series, let's talk about slicing a DataFrame. The
good news is that, in talking about series slicing, a lot of the hard work is
already done. We introduced loc and iloc as series methods, but they are
DataFrame methods as well. After all, you should be thinking of
DataFrames as multiple series glued together as columns.

We now need to think about how what we learned for series translates to a
two-dimensional setting. If we use bracket notation, it will work only for
the columns of the DataFrame. We will need to use loc and iloc to subset
rows of the DataFrame. In truth, these methods can accept two positional
arguments. The first positional argument determines which rows to select,
and the second positional argument determines which columns to select,
according to the rules we described earlier. The second argument can be
emitted to select all columns and apply selection rules only to rows. This
means that we should have the first argument as a colon, in order to be
more choosy in the columns we select.

loc and iloc will impose index-based or integer-position-based indexing on
both their arguments, while ix may allow for mixing of this behavior. I
would not recommend doing this. The result to a later reader is too
ambiguous. If you want to mix the behavior of loc and iloc, I would
recommend method chaining. That is, if you want to select rows based on
the index and columns based on integer locations, first use the loc method
to choose the rows and iloc to choose the columns. There is no ambiguity
about how elements of the DataFrame are chosen when you do this.

What if you want to choose just one column? The result is as follows:

https://www.facebook.com/groups/stats.ebooksandpapers/

There is a shorthand for doing this; just treat the particular column as an
attribute of the DataFrame, as an object, effectively selecting it using dot
notation. This can be convenient:

Remember that pandas is built from NumPy, and behind a DataFrame are
NumPy arrays.

Thus, knowing what you now know about NumPy arrays, the following
fact should be no surprise to you. When assigning the result of a slicing
operation of a DataFrame to a variable, what the variable hosts is not a
copy of the data but a view of the data in the original DataFrame:

https://www.facebook.com/groups/stats.ebooksandpapers/

If you want to make an independent copy of this data, you will need to use
the copy method of a DataFrame. The same holds true for series.

Let's now look at an an example. Here, we create a DataFrame, df, with
interesting indices and column names:

I can easily get a series representing the data in the first column, by
treating the name of the first column as an attribute of df. Next, we see the

https://www.facebook.com/groups/stats.ebooksandpapers/

behavior of loc and iloc. loc chooses rows and columns based on their
indices, but iloc chooses them as if they were lists; that is, it uses integer
positions:

Here, we see method chaining. For input 10, you may notice that it starts
like input 9 on the previous slide, but then I called loc on the resulting view
to further subset the data. I saved the result of this method chaining in df2. I
also changed the contents of the second column with df2, replacing them
with a new series of custom data:

Because df2 is an independent copy of df, notice that we had to use a copy
method when creating df2; the original data is not affected. This gets us to
an important point. Series and DataFrames are not immutable objects; you
can change their contents. This works similarly to making changes to
content in NumPy arrays. Be careful when making changes across
columns though; they may not be of the same data type, leading to
unpredictable results sometimes:

https://www.facebook.com/groups/stats.ebooksandpapers/

We see what assignment looks like here:

This behavior is pretty similar to what you've seen in NumPy, so I won't
discuss it much. There's more to be said about subsetting, in particular
when the index is actually a MultiIndex, but this is for later.

https://www.facebook.com/groups/stats.ebooksandpapers/

Summary
In this chapter, we introduced pandas and looked at what it does; we
explored pandas series, DataFrames, and creating them. We also looked at
adding data to a series and a DataFrame; finally we covered saving
DataFrames. In the next chapter, we will talk about arithmetic, function
applications, and function mapping.

https://www.facebook.com/groups/stats.ebooksandpapers/

Arithmetic, Function Application,
and Mapping with pandas
We've seen some basic tasks done with pandas series and DataFrames.
Let's move on to more interesting applications. In this chapter, we'll revisit
some topics discussed previously, regarding applying functions in
arithmetic to a multivariate object and handling missing data in pandas.

https://www.facebook.com/groups/stats.ebooksandpapers/

Arithmetic
Let's see an example. The first thing we'll do is start up pandas and
NumPy.

In the following screenshot, we have two series, srs1 and srs2:

srs1 has an index that goes from 0 to 4, whereas srs2 has an index that goes
from 0 to 3, skips 4, and then goes to 5. These two series are technically
the same length, but that doesn't necessarily mean that the elements will
match up as you might expect. For example, let's consider the following
code. What happens when we add srs1 and srs2?

Two NaNs were produced. That was because, for elements 0 to 3, there
were elements in both series that could be matched up, but for 4 and 5,

https://www.facebook.com/groups/stats.ebooksandpapers/

there were non-equivalent elements for each index in both series. This is
also going to be the case when we multiply, shown as follows:

Or if we were to exponentiate, as follows:

That being said, Boolean arithmetic is different. In this case, comparison is
done element by element, as you would normally expect. In fact, it seems
that Boolean comparison doesn't care at all about the index, shown as
follows:

https://www.facebook.com/groups/stats.ebooksandpapers/

Take the square root of srs2, shown here:

Notice that the indices of the series were preserved, but we have taken the
square roots of the elements in the series. Let's take the absolute value of
srs1—again an expected result—and notice that we can confirm that this is
still in fact a series, shown as follows:

Now, let's apply a custom ufunc. Here, we're using decorator notation. In
the next screenshot, let's see what happens when we use a vectorized
version of this truncation function, an array, and then when we apply it to
srs1, shown as follows:

https://www.facebook.com/groups/stats.ebooksandpapers/

Notice that srs1, which used to be a pandas series, is no longer a series; it is
now a NumPy ndarray. So, the index that the series had was lost.

Compute the mean of srs1:

Or a standard deviation, as follows:

The maximal element, as follows:

Or where the maximal element is located, as follows:

Or the cumulative sum, elements of the series in succession to create a new
series:

https://www.facebook.com/groups/stats.ebooksandpapers/

Now, let's talk about function application and mapping. This is similar to
the truncation function we defined before. I'm using a lambda expression to
create a temporary function that will then be applied to every element of
srs1, shown as follows:

We could have defined a vectorized function to do this, but notice that by
using apply, we managed to preserve the series structure. Let's create a
new series, srs3, shown as follows:

Let's see what happens when we have a dictionary and then map srs3 to the
dictionary. Notice that the elements of srs3 correspond to the keys of the
dictionary. So, when we map, what I end up with is another series and the
values of the dictionary objects that correspond to the keys looked up by
the series map, shown as follows:

https://www.facebook.com/groups/stats.ebooksandpapers/

This also works with functions, like how apply does.

https://www.facebook.com/groups/stats.ebooksandpapers/

Arithmetic with DataFrames
Arithmetic between DataFrames bears some similarity with series or
NumPy array arithmetic. Arithmetic between two DataFrames, or a
DataFrame and a scaler, works as you'd expect; but arithmetic between a
DataFrame and a series requires care. What must be kept in mind is that
arithmetic involving a DataFrame applies to the columns of the DataFrame
first, and then it applies across the rows of the DataFrame. So, columns in
the DataFrame will be matched with either the single scalar, elements of
the series with indices of the same name as the columns, or columns in the
other involved DataFrame. If there are elements of either the series or
either DataFrame that cannot find a mate, then new columns will be
generated, corresponding to the unmatched elements or columns and
populated with Nan.

https://www.facebook.com/groups/stats.ebooksandpapers/

Vectorization with DataFrames
Vectorization can be applied to DataFrames. Many NumPy ufuncs, such as
square root or sqrt, will work as expected when given a DataFrame; in fact,
they may still return a DataFrame when given a DataFrame. That said, this
cannot be guaranteed, especially when using a custom ufunc created with
vectorize. They may instead return an ndarray in such a situation. While
these methods work on DataFrames with common data types, it cannot be
guaranteed that they will work on all DataFrames.

https://www.facebook.com/groups/stats.ebooksandpapers/

DataFrame function application
Not surprisingly, DataFrames provide methods for function application.
There are two methods you should be aware of, apply and applymap. apply
takes a function and, by default, applies the function to the series
corresponding to each column of the DataFrame. What is produced
depends on what the function does. We can change the axis argument of
apply so that instead of applying to columns (that is, across rows), it
applies to rows (that is, across columns). applymap has a different purpose
than apply. Whereas apply will evaluate the supplied function on each
column and thus should be prepared to take a series, applymap will evaluate
the pass function on each element of the DataFrame individually.

We could apply functions to get the quantities we want, but it's often more
useful and perhaps faster to use existing methods provided with
DataFrames.

Let's see some demonstrations of working with DataFrames. Many of the
tricks that worked with series will also work with DataFrames but with a
slight complication. So let's first create a DataFrame, shown as follows:

Here we subtract a DataFrame from another DataFrame:

https://www.facebook.com/groups/stats.ebooksandpapers/

There are also useful methods for working with DataFrames; for example,
we can take the mean of each column, shown here:

Or we can find each column's standard deviation, shown here:

Another useful trick would be to standardize the numbers in each column.
Now, df.mean and df.std return a series, so what we're actually doing is
subtracting a series and then dividing by a series, shown as follows:

Let's now look at some vectorization. The square root function, which is a
vectorized function from NumPy, works as expected on the DataFrame:

https://www.facebook.com/groups/stats.ebooksandpapers/

Remember the custom ufunctrunk? It will not give us a DataFrame, but it
will evaluate and return something that is DataFrame-like, shown as
follows:

However, this is going to produce an error when run on a DataFrame of
mixed data types:

This is why you need to be careful. Now here, I'm going to show you a
trick for avoiding the problem of mixed data types. Notice that I am using
a method that I have not introduced before, called select_dtypes. What this

https://www.facebook.com/groups/stats.ebooksandpapers/

will do is select columns that have a particular dtype. In this case, I am
requesting columns of numeric dtype:

Notice that the third column, which consists of string data, is excluded. So
when I take the square root, it works just fine except for the negative
number:

Now, let's look at the function's application. Here, I'm going to define a
function that computes what is known as the geometric mean. So the first
thing I do is define a geometric mean function:

We apply this function to every column of the DataFrame:

https://www.facebook.com/groups/stats.ebooksandpapers/

The last trick I show is with applymap, where I demonstrate how this
function works with a new lambda for a truncation function, this time
truncating at 3:

Next, we will talk about the means of addressing missing data in
DataFrames.

https://www.facebook.com/groups/stats.ebooksandpapers/

Handling missing data in a pandas
DataFrame
In this section, we will be looking at how we can handle missing data in a
pandas DataFrame. We have a few ways of detecting missing data that
work for both series and DataFrames. We could use NumPy's isnan
function; we could also use the isnull or notnull method supplied with
series and DataFrames for detection. NaN detection could be useful for
custom approaches for handling missing information.

In this Notebook, we're going to look at ways of managing missing
information. First we generate a DataFrame containing missing data,
illustrated in the following screenshot:

As mentioned before in pandas, missing information is encoded by
NumPy's NaN. This is, obviously, not necessarily how missing
information is encoded everywhere. For example, in some surveys,
missing data is encoded by an impossible numeric value. Say, the number
of children the mother has is 999; this is obviously not correct. This is an
example of using a sentinel value to indicate missing information.

But here, we're simply going to use the pandas convention of representing

https://www.facebook.com/groups/stats.ebooksandpapers/

missing data with NaN. We can also create a series with missing data in it.
The next screenshot shows that series:

Let's look at some methods for detecting missing data. These methods are
going to produce identical results or completely contradictory results. For
example, we could use NumPy's isnan function to return a DataFrame that
is true where data is NaN or missing, and false otherwise:

The isnull method does a similar thing; it's just that it uses the DataFrames
method as opposed to a NumPy function, shown as follows:

https://www.facebook.com/groups/stats.ebooksandpapers/

The notnull function is basically the exact opposite of the isnull function; it
returns false when data is missing, and true when data is not missing,
shown as follows:

https://www.facebook.com/groups/stats.ebooksandpapers/

Deleting missing information
The dropna for series and DataFrames can be useful for creating a copy of
the object where rows of missing information are removed. By default, it
drops rows with any missing data, and when used with a series, it
eliminates elements with NaN. If you want this done in place, set the
inplace parameter to true.

If we only want to remove rows that contain only missing information, and
thus no information of any use, we can set the how parameter to all. By
default, this method works along rows, but if we want to change it to work
along columns, we can set the access argument to 1.

Here's an example of what we just discussed. Let's take this DataFrame, df,
and drop any rows where missing data is present:

Notice that we have dramatically shrunk the size of our DataFrame; only
two rows consisted only of complete information. We can do a similar
thing with the series, shown as follows:

Sometimes, missing information is simply ignored when computing some
metrics. For example, it's not at all problematic to simply exclude missing
information when computing particular metrics such as mean, sum,
standard deviation, and so on. This is done by default by many pandas

https://www.facebook.com/groups/stats.ebooksandpapers/

methods, though it is possible to change parameters to control this
behavior, perhaps specified by a parameter like skipna. This approach may
be a good intermediate step when we are trying to fill in missing data. For
example, we may try to fill missing data in a column with the mean of the
non-missing data.

https://www.facebook.com/groups/stats.ebooksandpapers/

Filling missing information
We can use the fillna method to replace missing information in a series or
DataFrame. We give fillna an object instructing the method how this
information should be replaced. By default, the method creates a new
DataFrame or series. We can give fillna a single value, a dict, a series, or a
DataFrame. If given a single value, then all entries indicating missing
information will be replaced with that value. A dict can be used for more
advanced replacement schemes. The values of the dict could correspond to,
say, columns of the DataFrame; think of it as telling how to fill missing
information in each column. If a series is used for filling missing
information in a series, then the past series tells how to fill particular
entries in the series with the missing data. This holds analogously when a
DataFrame is used for filling missing information in a DataFrame.

If a series is used for filling missing information in a DataFrame, then the
series index should correspond to columns of the DataFrame, and it gives
values for filling particular columns in that DataFrame.

Let's look at some of the approaches to filling in missing information. For
example, we may try to fill in missing information by computing the mean
of the rest of the dataset, and then filling in missing data in that dataset
with the mean. In the next screenshot, we can see filling in missing
information with zeros, which is a very crude approach:

https://www.facebook.com/groups/stats.ebooksandpapers/

A slightly better approach would be to fill in missing data with its mean,
shown as follows:

But notice that some things may not be the same. For example, while the
mean of the new dataset with missing information filled in has the same
mean as the original dataset, compare the standard deviation of the original
dataset to the standard deviation of the new dataset, shown as follows:

The standard deviation went down; this aspect was not preserved. So, we
may want to use a different approach to filling in missing information.

https://www.facebook.com/groups/stats.ebooksandpapers/

Perhaps, a way to try this is by randomly generating data with the same
mean and standard deviation as the original data. Here, we see a technique
that resembles the statistical technique of bootstrapping, where you
resample from an existing dataset to emulate its properties in simulated
datasets. We begin by generating a brand new dataset, a series that
randomly picks numbers from the original series, and also as the index of
the missing data, shown as follows:

This series is then used for filling in the missing data of the original series:

The entries 5 and 7 correspond to the series used for filling in the missing
data. Now let's compute the means, as follows:

Neither the mean nor the standard deviation are the same, but the
difference between these and the original means and standard deviation is
not quite as egregious as before, at least for the standard deviation. Now,
obviously with random numbers, this cannot be guaranteed except for
large sample sizes.

https://www.facebook.com/groups/stats.ebooksandpapers/

Let's look at filling in missing information in a DataFrame. For example,
here is the DataFrame used previously, where we fill in missing data with
0:

Now, of course you may think there is something problematic with the
number 0, so let's look at perhaps filling in missing data with the column
means. The command for doing so may resemble the following:

But notice something; the standard deviations have all gone down from
what they used to be when we used this approach for filling in missing
data!

https://www.facebook.com/groups/stats.ebooksandpapers/

We will try the bootstrapping trick that we attempted before. We will fill
in missing information with a dictionary, or a dict. We will create a dict
that contains a series for every column with missing information in the
DataFrame, and these series will be similar to the series that we generated
earlier:

Then we fill in the missing information with the data contained in this
dictionary:

Notice the relationship between the means and the standard deviations:

https://www.facebook.com/groups/stats.ebooksandpapers/

https://www.facebook.com/groups/stats.ebooksandpapers/

Summary
In this chapter, we covered arithmetic operations with pandas DataFrames,
vectorization, and DataFrame function applications. We also learned how
to handle missing data in a pandas DataFrame by deleting or filling in
missing information. In the next chapter, we will look at sorting,
ranking, and common tasks in data analysis projects.

https://www.facebook.com/groups/stats.ebooksandpapers/

Managing, Indexing, and Plotting
Let's now take a brief look at sorting data using pandas methods. In this
chapter, we will be looking at sorting and ranking. Sorting is putting data
into various orders, while ranking is finding out which order data would be
in if it were sorted. We'll see how to achieve this in pandas. We'll also
cover hierarchical indexing and plotting with pandas.

https://www.facebook.com/groups/stats.ebooksandpapers/

Index sorting
When talking about sorting, we need to think about what exactly we are
sorting. There are rows, columns, their indices, and the data they contain.
Let's first look at index sorting. We can use the sort_index method to
rearrange the rows of a DataFrame so that the row indices are in order. We
can also sort the columns by setting the access parameter of sort_index to 1.
By default, sorting is done in ascending order; later rows have larger
values than earlier rows, but we can change this behavior by setting the
ascending value of the sort_index value to false. This sorts in descending
order. By default, this is not done in place; you need to set the in place
argument of sort_index to true for that.

While I have emphasized sorting for DataFrames, sorting a series is
effectively the same. Let's see an example. After loading in NumPy and
pandas, we create a DataFrame with values to sort, shown in the following
screenshot:

Let's sort the index; notice that this is not done in place:

https://www.facebook.com/groups/stats.ebooksandpapers/

Let's sort the columns this time, and we will do them in reverse order by
setting ascending=False; so the first column is now CCC and the last is AAA,
shown as follows:

https://www.facebook.com/groups/stats.ebooksandpapers/

Sorting by values
If we wish to sort the rows of a DataFrame or the elements of a series, we
need to use the sort_values method. For a series, you'd call sort_values and
call it a day. For a DataFrame though, you would need to set the by
parameter; you can set by to a string, indicating the column you want to
sort by, or to a list of strings, indicating column names. Sorting will
first proceed according to the first column in this list; then, when ties
appear, sorting will be according to the next column, and so on.

So, let's demonstrate some of these sorting techniques. We sort the values
of the DataFrame according to the column AAA, shown in the following
screenshot:

Notice that all the entries in AAA are now in order, though not much can be
said for the other columns. But we can sort according to BBB and break ties
according to CCC with the following command. Here is the result:

Ranking tells us how the elements would look if they were put in order.

https://www.facebook.com/groups/stats.ebooksandpapers/

We can use the rank method to find the ranking of elements in a series or
DataFrame. By default, ranking is done in ascending order; set the
ascending argument to false to change this. Ranking is straightforward
until ties occur. In such an event, you will need a way to determine the
rank. There are four methods for handling ties: average, min, max, and
first. Average gives the average rank, min gives the lowest rank possible,
max gives the highest possible, and first uses the order in the series to
break ties so that they never occur. When called on a DataFrame, each
column is ranked individually, and the result will be a DataFrame
containing ranks. So now, let's see this ranking in action. We ask for the
rank of the entries in df, and this is in fact the result:

Notice that we see the rank for each entry of this DataFrame. Now, notice
that there were some ties here, in particular for the entry e and the entry g
for column CCC. We got the tie broken using average, which is the default,
but if we wanted to, we've could set this to max, shown as follows:

As a result, both of these get the fifth place. Up next, we talk about
hierarchical indexing.

https://www.facebook.com/groups/stats.ebooksandpapers/

Hierarchical indexing
We have come a long way, but we're not quite done yet. We need to talk
about hierarchical indexing. In this section, we look at hierarchical indices,
why they are useful, how they are created, and how they can be used.

So, what are hierarchical indices? They bring additional structure to an
index and exist in pandas as MultiIndex class objects, but they are still an
index that can be assigned to a series or DataFrame. With a hierarchical
index, we think of rows in a DataFrame, or elements in a series, as
uniquely identified by combinations of two or more indices. These indices
have a hierarchy, and selecting an index at one level will select all
elements with that level of the index. We can go on a more theoretical path
and claim that when we have a MultiIndex, the dimensionality of the table
increases. It behaves, not as a square on which data exists, but as a cube, or
at least it could.

A hierarchical index is used when we want additional structure on the
index without treating that structure as a new column. One way to create a
MultiIndex is to use the initialization method of the MultiIndex object in
pandas. We can also create a MultiIndex implicitly when creating a pandas
series or DataFrame, by passing a list of lists to the index argument, each of
them having the same length as the series. Either method is acceptable, but
we will have an index object we assign to the series or DataFrame we're
creating in the first case; while in the second, the series and MultiIndex are
created simultaneously.

Let's create some hierarchical indices. After importing pandas and NumPy,
we create a MultiIndex directly using the MultiIndex object. Now, this notation
may be somewhat difficult to read, so let's create this index and explain
what just happened:

https://www.facebook.com/groups/stats.ebooksandpapers/

Here, we assign the levels of the index, that is, possible values the
MultiIndex can take. So, we have for the first level, a and b; for the second
level, alpha and beta; and for the third level, 1 and 2. Then we assign, for
each row of this MultiIndex, which of these levels are taken. So, each of the
zeros for this first list indicates the value a, and each of the ones for this list
indicates the value b. Then we have zeros for alpha and ones for beta in the
second list. In the third list, we have zeros for 1 and ones for 2. And thus,
you end up with this object after assigning midx to the index of series.

Another way to create a MultiIndex is directly when we are creating the
series we're interested in. Here, the index argument has been passed
multiple lists, each of those lists being a part of a MulitIndex.

The first line will be for the first level of the MulitIndex, the second line for
the second level, and the third line for the third level. It's very similar to
what we did in the earlier case, but instead of having the levels explicitly
defined and then defining which of the levels are for each value of the
series, we simply put in the values that we are interested in:

https://www.facebook.com/groups/stats.ebooksandpapers/

Notice that these produce identical results.

https://www.facebook.com/groups/stats.ebooksandpapers/

Slicing a series with a hierarchical
index
When it comes to slicing, series of the hierarchical index resemble NumPy
multidimensional arrays. For example, if using the square bracket
accessor, we simply separate levels of the hierarchical index with commas,
and slice each level, imagining that they were separate indices for separate
dimensions of some high-dimensional object. This holds for the loc method
as well as for series, but not for DataFrames; we'll see what to do there
later. All the usual tricks when slicing indices still work when using loc,
but it's easier to get multiple results for a slicing operation.

So, let's see slicing a series of the MultiIndex in action. The first thing we're
going to do is slice the first level, selecting only those elements where the
first level is b; this is the result:

Then we narrow it down further to b and alpha; the following is the result.
It's going to be the alpha segment (in the preceding screenshot) of the
series:

Then we select it even further, so we have to go three levels if we want to
select one particular element of this series, as follows:

https://www.facebook.com/groups/stats.ebooksandpapers/

If we wish to select every element of the series, such that the first level is a
and the last level is 1, we will need to put a colon in the middle to indicate
that we don't care whether we have alpha or beta, and this is the result:

When a hierarchical index is present for a DataFrame, we can still use the
loc method for indexing, but doing so is trickier than for series. After all,
we can't separate levels of the index by commas because we have a second
dimension, columns. So we use tuples to provide instructions for slicing
one of the dimensions of the DataFrame, providing the objects that instruct
how to slice. Each element of the tuple could be a number, a string, or a
list of desired elements.

We cannot really use the colon notation when using tuples; we will need to
rely on slicers. We see here how to replicate some of the slicing notation
commonly used with slicers. We can pass these slicers on to the elements
of the tuple used for slicing so that we can do the slicing operations we
like. If we want to select all columns, we will still need to provide a colon
in the columns' position in loc. Naturally, we can replace the slicers with a
more specific means for slicing, such as a list or a single element. Now, I
never talked about what would happen if columns had a hierarchical index.
That's because the lessons are essentially the same—because columns are
just an index on a different axis.

So now let's look at managing a hierarchical index attached to a
DataFrame. The first thing we do is create a DataFrame with a hierarchical
index. Then we select all rows where the first level of this index is b. We
get the following result, which is not too shocking:

https://www.facebook.com/groups/stats.ebooksandpapers/

And then we repeat by narrowing down by b and alpha, but notice that we
now have to use a tuple in order to ensure that alpha is not being
interpreted as a column that we're interested in, shown as follows:

Then we narrow down even further, as follows:

Now, let's try to replicate some of the things that we did before, but recall
that we can no longer use the colon notation here; we have to use slicers.
So the slicing call that we are going to use here is identical to the slicing
call that we used in srs.loc['b', 'alpha', 1]. I say slice(None), which basically
means select everything in the second level:

And we do have to put a colon in the columns position if we intend to

https://www.facebook.com/groups/stats.ebooksandpapers/

select all columns; otherwise an error will be thrown. Here, we're going to
do what is effectively the equivalent of using :'b', so we are selecting from
the very beginning up to b. This is the result:

Finally, we select everything in the first level and everything in the second
level, but we're going to be specific only in the third level, shown as
follows:

And notice that we have been passing indexing calls to the columns as
well, because this is an entirely separate call. We now move on to using
plotting methods provided by pandas.

https://www.facebook.com/groups/stats.ebooksandpapers/

Plotting with pandas
In this section, we will be discussing the plotting methods provided by
pandas series and DataFrames. You will see how to easily and quickly
create a number of useful plots. pandas has not yet come up with plotting
functionality that's entirely its own. Rather, plots created from pandas
objects using pandas methods are just wrappers for more complex calls
made to a plotting library called Matplotlib. This is a well-known library
in the scientific Python community, one of the first plotting systems, and
perhaps the most commonly used one, though other plotting systems are
looking to supplant it.

It was initially inspired by the plotting system provided with MATLAB,
though now it is its own beast, but not necessarily the easiest to use.
Matplotlib has a lot of functionality, and we will only scratch the surface
of plotting with it in this course. This section is the extent to which we
discuss visualization with Python beyond particular instances, even though
visualization is a key part of data analysis, from initial exploration to
presenting results. I recommend looking for other resources to learn more
about visualization. For example, Packt has video courses devoted
exclusively to this topic.

Anyway, if we want to be able to plot using pandas methods, Matplotlib
must be installed and available for use. If you're using a Jupyter Notebook
or the Jupyter QtConsole, or some other IPython-based environment, I
would recommend running the pylab magic.

https://www.facebook.com/groups/stats.ebooksandpapers/

Plotting methods
The key pandas objects, series, and DataFrames come supplied with a
plotting method, simply known as plot. It can easily create plots such as
line plots, scatter plots, bar charts, or what are known as kernel density
estimation plots (used to get a sense of the shape of the data), and so on.
There are many plots that can be created. We can control which plot we
want by setting the kind parameter in plot, to a string, indicating which plot
we want. Often this produces some plot with usually well-chosen default
parameters. We can have more control over the final output by specifying
other parameters in the plot method, which are then passed on to
Matplotlib. Thus we can control issues such as labeling, the style of the
plot, x limits, y limits, opacity, and other details.

Other methods exist for creating different plots; for example, series have a
method called hist for creating histograms.

In this Notebook, I'm going to demonstrate what some plots look like. The
first thing I'll be doing is loading in pandas, and I will be using the pylab
magic, the Matplotlib magic with the parameter inline, so that we can see
plots the moment they are created:

Now, we create a DataFrame that contains three random walks, which is a
process that's studied and used in probability theory. A random walk can
be generated by creating standard normal random variables and then
summing them up cumulatively, as shown here:

https://www.facebook.com/groups/stats.ebooksandpapers/

We use the head method to see only the first five rows. This is a good way
to get a sense of the structure of the dataset. So, what do these plots look
like? Well, let's create a line plot that visualizes them, illustrated as
follows:

These are just random movements, up and down. Notice that the plot
method automatically generated a key and a legend and assigned colors to
the different lines, which correspond to columns of the DataFrame from
which we're plotting. Let's see what this plot looks like for a series, shown
as follows:

https://www.facebook.com/groups/stats.ebooksandpapers/

It's a little less advanced but as you can see, we can still create these plots
using series.

Let's specify a parameter, ylim, so that the scale of the plot from the series
is the same as the scale of the plot for the DataFrame, shown as follows:

Now let's look at some different plots. In the next screenshot, let's look at
the histogram of the values that are in this series:

https://www.facebook.com/groups/stats.ebooksandpapers/

A histogram is a useful way to determine the shape of a dataset. Here, we
see a roughly symmetrical, almost bell curve shape.

We can also create a histogram using the plot method, as follows:

A kernel density estimator is effectively a smooth histogram. With a
histogram, you create bins and count how many observations in your
dataset fell into those bins. The kernel density estimator uses a different
way to create the plot, but what you end up with is a smooth curve, shown
as follows:

Let's look at some other plots. For example, we create box plots for the

https://www.facebook.com/groups/stats.ebooksandpapers/

DataFrame:

We can also create scatter plots, and when creating a scatter plot, we will
need to specify which column corresponds to x values and which column
corresponds to y values:

There are a lot of data points here. Another approach would be to use
what's called a hex-bin plot, which you can think of as a 2D histogram; it
counts the observations that have fallen into certain hexagonal bins on the
real plane, shown as follows:

https://www.facebook.com/groups/stats.ebooksandpapers/

Now, this hex plot doesn't seem to be very useful, so let's set the grid size
to 25:

Now we have a much more interesting plot, and we can see where the data
tends to cluster. Let's compute the standard deviation of each column in
the plot, as follows:

And now, let's create a bar plot to visualize these standard deviations, as
follows:

https://www.facebook.com/groups/stats.ebooksandpapers/

Now, let's look at a slightly more advanced tool called a scatter plot
matrix, which can be useful for visualizing multiple relationships in a
dataset, as follows:

There are many more plots that you can create; I seriously invite you to

https://www.facebook.com/groups/stats.ebooksandpapers/

explore plotting methods, not only those for pandas (for which I have
provided a link to the documentation with numerous examples) but also
those for Matplotlib.

https://www.facebook.com/groups/stats.ebooksandpapers/

Summary
In this chapter, we started with index sorting and saw how sorting can be
done by values. We covered hierarchical clustering and slicing a series
with a hierarchical index. In the end, we saw various plotting methods and
demonstrated them.

We've come a long way. We've set up a Python data analysis environment
and gotten familiar with basic tools. All the best!

https://www.facebook.com/groups/stats.ebooksandpapers/

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by
Packt:

Pandas Cookbook
Theodore Petrou

ISBN: 978-1-78439-387-8

Master the fundamentals of pandas to quickly begin exploring any
dataset
Isolate any subset of data by properly selecting and querying the data
Split data into independent groups before applying aggregations and
transformations to each group
Restructure data into tidy form to make data analysis and
visualization easier
Prepare real-world messy datasets for machine learning
Combine and merge data from different sources through pandas SQL-
like operations
Utilize pandas unparalleled time series functionality
Create beautiful and insightful visualizations through pandas direct
hooks to matplotlib and seaborn

https://www.packtpub.com/big-data-and-business-intelligence/pandas-cookbook
https://www.facebook.com/groups/stats.ebooksandpapers/

Hands-On Data Science with Anaconda
Dr. Yuxing Yan, James Yan

ISBN: 978-1-78883-119-2

Perform cleaning, sorting, classification, clustering, regression, and
dataset modeling using Anaconda
Use the package manager conda and discover, install, and use
functionally efficient and scalable packages
Get comfortable with heterogeneous data exploration using multiple
languages within a project
Perform distributed computing and use Anaconda Accelerate to
optimize computational powers
Discover and share packages, notebooks, and environments, and use
shared project drives on Anaconda Cloud
Tackle advanced data prediction problems

https://www.packtpub.com/big-data-and-business-intelligence/hands-data-science-anaconda
https://www.facebook.com/groups/stats.ebooksandpapers/

Leave a review - let other readers
know what you think
Please share your thoughts on this book with others by leaving a review on
the site that you bought it from. If you purchased the book from Amazon,
please leave us an honest review on this book's Amazon page. This is vital
so that other potential readers can see and use your unbiased opinion to
make purchasing decisions, we can understand what our customers think
about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of
your time, but is valuable to other potential customers, our authors, and
Packt. Thank you!

https://www.facebook.com/groups/stats.ebooksandpapers/

	Title Page
	Copyright and Credits
	Hands-On Data Analysis with NumPy and pandas

	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributors
	About the author
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Conventions used

	Get in touch
	Reviews

	Setting Up a Python Data Analysis Environment
	What is Anaconda?
	Installing Anaconda
	Exploring Jupyter Notebooks
	Exploring alternatives to Jupyter
	Spyder
	Rodeo
	ptpython

	Package management with Conda
	What is Conda?
	Conda environment management
	Managing Python
	Package management

	Setting up a database
	Installing MySQL
	MySQL connectors
	Creating a database

	Summary

	Diving into NumPY
	NumPy arrays
	Special numeric values
	Creating NumPy arrays
	Creating ndarray

	Summary

	Operations on NumPy Arrays
	Selecting elements explicitly
	Slicing arrays with colons

	Advanced indexing
	Expanding arrays
	Arithmetic and linear algebra with arrays
	Arithmetic with two equal-shaped arrays
	Broadcasting

	Linear algebra
	Employing array methods and functions
	Array methods
	Vectorization with ufuncs
	Custom ufuncs

	Summary

	pandas are Fun! What is pandas?
	What does pandas do?
	Exploring series and DataFrame objects
	Creating series
	Creating DataFrames
	Adding data
	Saving DataFrames

	Subsetting your data
	Subsetting a series

	Indexing methods
	Slicing a DataFrame

	Summary

	Arithmetic, Function Application, and Mapping with pandas
	Arithmetic
	Arithmetic with DataFrames
	Vectorization with DataFrames
	DataFrame function application

	Handling missing data in a pandas DataFrame
	Deleting missing information
	Filling missing information

	Summary

	Managing, Indexing, and Plotting
	Index sorting
	Sorting by values

	Hierarchical indexing
	Slicing a series with a hierarchical index

	Plotting with pandas
	Plotting methods

	Summary

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

	Botón:

